metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m219-m220

trans-Bis[acetone (2-hy­droxy­benzo­yl)hydrazonato-κ2N′,O]bis­­(pyridine-κN)zinc(II)

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: shenlin@fjnu.edu.cn

(Received 5 December 2008; accepted 15 January 2009; online 23 January 2009)

In the title compound, [Zn(C10H11N2O2)2(C5H5N)2], the ZnII atom lies on an inversion centre, and is coordinated in a distorted octa­hedral geometry by two carbonyl O atoms and two imino N atoms from two anionic bidentate acetone (2-hydroxy­benzo­yl)hydrazone ligands and by two N atoms from two pyridine mol­ecules. The hydroxyl group acts as a donor, forming an intra­molecular O—H⋯N hydrogen bond.

Related literature

For general background, see: Bai et al. (2006[Bai, Y., Dang, D.-B., Cao, X., Duan, C.-Y. & Meng, Q.-J. (2006). Inorg. Chem. Commun. 9, 86-89.]); Gao et al. (1998[Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.]); Grove et al. (2004[Grove, H., Kelly, T. L., Thompson, L. K., Zhao, L., Xu, Z., Abedin, T. S. M., Miller, D. O., Goeta, A. E., Wilson, C. & Howard, J. A. K. (2004). Inorg. Chem. 43, 4278-4288.]); Liu & Gao (1998[Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81-84.]); Ma et al. (1989[Ma, Y.-X., Ma, Z.-Q., Zhao, G., Ma, Y. & Yang, M. (1989). Polyhedron, 8, 2105-2108.]). For related structures, see: Chen & Liu (2004[Chen, X.-H. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 33-37.]); Domiano et al. (1975[Domiano, P., Musatti, A., Nardelli, M., Pelizzi, C. & Predieri, G. (1975). J. Chem. Soc. Dalton Trans. pp. 2357-2360.]); Hu et al. (2006[Hu, X., Zhang, L., Liu, L., Liu, G.-F., Jia, D.-Z. & Xu, G.-C. (2006). Inorg. Chim. Acta, 359, 633-641.], 2007[Hu, Z.-Q., Shi, S.-M., He, H.-W., Yu, D. & Jia, B. (2007). Chin. J. Inorg. Chem. 23, 323-328.]); Li et al. (2006[Li, M.-X., Zhou, J., Yan, L. & Wang, J.-P. (2006). Acta Cryst. E62, m2321-m2322.]); Liu et al. (1999[Liu, B., Hu, R.-X., Liang, H. & Yu, K.-B. (1999). Chin. J. Struct. Chem. 18, 414-417.]); Samanta et al. (2007[Samanta, B., Chakraborty, J., Shit, S., Batten, S. R., Jensen, P., Masuda, J. D. & Mitra, S. (2007). Inorg. Chim. Acta, 360, 2471-2481.]); Wen et al. (2000[Wen, X., Lu, Z.-L., Wang, X.-J., Su, C.-Y., Yu, K.-B., Liu, H.-Q. & Kang, B. (2000). Polyhedron, 19, 1295-1304.]); Wu et al. (2006[Wu, Y., Shi, S.-M., Jia, B. & Hu, Z.-Q. (2006). Acta Cryst. E62, m648-m649.]); Xiao et al. (2000[Xiao, G.-C., Feng, Y.-L. & Liu, S.-X. (2000). Chin. J. Struct. Chem. 19, 177-180.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H11N2O2)2(C5H5N)2]

  • Mr = 605.99

  • Monoclinic, P 21 /n

  • a = 7.8225 (8) Å

  • b = 10.0381 (10) Å

  • c = 18.8201 (18) Å

  • β = 96.21 (4)°

  • V = 1469.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 (2) K

  • 0.35 × 0.26 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: none

  • 13028 measured reflections

  • 3282 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 0.98

  • 3282 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 2.0319 (14)
Zn1—N2 2.1912 (16)
Zn1—N3 2.3013 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.99 1.61 2.535 (2) 154

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones have been attracting much attention by chemists in recent years because of their biological activities, chemical and industrial versatility, and strong tendency to chelate transition metals (Bai et al., 2006; Grove et al., 2004), lanthanide metals (Ma et al., 1989) and main group metals (Gao et al., 1998; Liu & Gao, 1998). In particular, salicyloylhydrazone can be very flexible and finely tuned at the molecular level to take versatile bonding modes. It can act as a bi-, tri-, tetra- and even pentadentate ligand. A number of zinc(II) complexes with salicyloylhydrazone ligands have been studied (Hu et al., 2006; Hu et al., 2007; Li et al., 2006; Samanta et al., 2007; Wu et al., 2006). As an extension of the work on the structural characterization of salicyloylhydrazone complexes, the preparation and crystal structure of the title zinc(II) complex are reported here.

The molecular structure of the title compound is shown in Fig. 1. The ZnII atom lies on an inversion centre and has an axially elongated octahedral coordination geometry. The two carbonyl O atoms and the two imino N atoms make up the equatorial plane and the two N atoms of two pyridine molecules occupy the axial positions at longer distances (Table 1). Double-bond character is present in C7—N1 and C8—N2, as judged from their bond lengths [1.322 (2) and 1.286 (2) Å] (Domiano et al., 1975; Liu et al., 1999; Xiao et al., 2000). The C7—O2 bond length of 1.273 (2) Å approaches the value of 1.263 Å expected for an enolic form of the hydrazone ligand (Chen & Liu, 2004; Wen et al., 2000). The data suggest enolization and deprotonation of the hydrazone groups, which is different from the analogous ZnII complex with the same ligand (Li et al., 2006). There exists an intramolecular O—H···N hydrogen bond (Table 2).

Related literature top

For general background, see: Bai et al. (2006); Gao et al. (1998); Grove et al. (2004); Liu & Gao (1998); Ma et al. (1989). For related structures, see: Chen & Liu (2004); Domiano et al. (1975); Hu et al. (2006, 2007); Li et al. (2006); Liu et al. (1999); Samanta et al. (2007); Wen et al. (2000); Wu et al. (2006); Xiao et al. (2000).

Experimental top

All reagents were commercially available and of analytical grade. To a solution of Zn(CH3COO)2.2H2O (0.110 g, 0.5 mmol) in pyridine (5 ml) was slowly added a suspension of acetone-N-salicyloylhydrazone (0.192 g, 1.0 mmol) in DMF(5 ml). The resulting red solution was stirred for 20 min and then filtered. After standing for 5 d, yellow crystals were separated from the filtrate.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) Å and with Uiso(H) = xUeq(C), where x=1.2 for aromatic and 1.5 for methyl H atoms. H atom of the hydroxyl group was located in difference Fourier map and refined isotropically with its coordinates fixed.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, -y, -z.]
trans-Bis[acetone (2-hydroxybenzoyl)hydrazonato-κ2N',O]bis(pyridine- κN)zinc(II) top
Crystal data top
[Zn(C10H11N2O2)2(C5H5N)2]F(000) = 632
Mr = 605.99Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3282 reflections
a = 7.8225 (8) Åθ = 2.3–27.5°
b = 10.0381 (10) ŵ = 0.88 mm1
c = 18.8201 (18) ÅT = 293 K
β = 96.21 (4)°Block, yellow
V = 1469.1 (3) Å30.35 × 0.26 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2334 reflections with I > 2σ(I)
Radiation source: 18 kW rotation anodeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 010
13028 measured reflectionsk = 013
3282 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
3282 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C10H11N2O2)2(C5H5N)2]V = 1469.1 (3) Å3
Mr = 605.99Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8225 (8) ŵ = 0.88 mm1
b = 10.0381 (10) ÅT = 293 K
c = 18.8201 (18) Å0.35 × 0.26 × 0.15 mm
β = 96.21 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2334 reflections with I > 2σ(I)
13028 measured reflectionsRint = 0.034
3282 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.98Δρmax = 0.38 e Å3
3282 reflectionsΔρmin = 0.33 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.00000.04214 (12)
O10.4610 (2)0.49143 (15)0.11896 (11)0.0690 (5)
H10.51710.42150.09260.113 (11)*
O20.35166 (17)0.09309 (14)0.06705 (8)0.0492 (3)
N10.5358 (2)0.27234 (16)0.06295 (8)0.0423 (4)
N20.6294 (2)0.19207 (16)0.02003 (8)0.0433 (4)
N30.6638 (2)0.09222 (17)0.09654 (9)0.0469 (4)
C10.2948 (2)0.2914 (2)0.12902 (10)0.0435 (4)
C20.3302 (3)0.4273 (2)0.14421 (11)0.0525 (5)
C30.2284 (4)0.4958 (3)0.18860 (14)0.0694 (7)
H3A0.24840.58590.19770.083*
C40.1004 (4)0.4326 (3)0.21861 (15)0.0755 (8)
H4A0.03720.47900.24960.091*
C50.0628 (4)0.3007 (3)0.20383 (15)0.0753 (7)
H5A0.02670.25870.22370.090*
C60.1600 (3)0.2321 (2)0.15905 (12)0.0567 (5)
H6A0.13420.14330.14870.068*
C70.3987 (2)0.21174 (19)0.08292 (10)0.0397 (4)
C80.7671 (3)0.2453 (2)0.00115 (12)0.0511 (5)
C90.8255 (3)0.3833 (2)0.02229 (16)0.0741 (7)
H9A0.74570.42260.05150.111*
H9B0.83080.43640.01980.111*
H9C0.93740.37920.04870.111*
C100.8761 (3)0.1689 (3)0.04426 (17)0.0835 (9)
H10A0.82620.08260.05430.125*
H10B0.98930.15870.01950.125*
H10C0.88330.21590.08830.125*
C110.7532 (3)0.0149 (2)0.14528 (13)0.0584 (6)
H11A0.74480.07710.14010.070*
C120.8567 (3)0.0653 (3)0.20266 (13)0.0659 (7)
H12A0.91720.00820.23520.079*
C130.8699 (3)0.2014 (3)0.21143 (13)0.0647 (6)
H13A0.93980.23800.24960.078*
C140.7773 (3)0.2813 (2)0.16238 (13)0.0624 (6)
H14A0.78240.37350.16670.075*
C150.6764 (3)0.2228 (2)0.10655 (12)0.0549 (5)
H15A0.61340.27810.07390.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04131 (17)0.03917 (18)0.04726 (19)0.01003 (14)0.01086 (12)0.00788 (15)
O10.0754 (11)0.0435 (8)0.0881 (12)0.0109 (8)0.0086 (10)0.0158 (9)
O20.0496 (7)0.0406 (7)0.0606 (9)0.0129 (6)0.0201 (6)0.0087 (7)
N10.0429 (8)0.0400 (8)0.0437 (8)0.0079 (7)0.0031 (7)0.0041 (7)
N20.0410 (8)0.0441 (9)0.0447 (9)0.0106 (7)0.0046 (7)0.0030 (7)
N30.0466 (9)0.0486 (10)0.0449 (9)0.0068 (8)0.0024 (7)0.0018 (8)
C10.0495 (10)0.0437 (10)0.0360 (9)0.0032 (9)0.0008 (8)0.0007 (8)
C20.0589 (12)0.0486 (12)0.0476 (12)0.0048 (11)0.0056 (10)0.0054 (10)
C30.0841 (17)0.0553 (14)0.0669 (15)0.0167 (14)0.0013 (13)0.0165 (13)
C40.0821 (18)0.0784 (19)0.0683 (16)0.0286 (16)0.0177 (14)0.0098 (14)
C50.0811 (17)0.0750 (18)0.0756 (17)0.0154 (15)0.0344 (14)0.0028 (14)
C60.0617 (13)0.0532 (13)0.0582 (13)0.0043 (11)0.0201 (10)0.0016 (11)
C70.0435 (9)0.0391 (9)0.0355 (9)0.0050 (8)0.0003 (7)0.0001 (8)
C80.0447 (10)0.0505 (12)0.0587 (12)0.0168 (9)0.0076 (9)0.0020 (10)
C90.0645 (14)0.0572 (15)0.102 (2)0.0289 (12)0.0137 (14)0.0001 (14)
C100.0660 (15)0.0813 (19)0.111 (2)0.0259 (14)0.0433 (15)0.0134 (17)
C110.0641 (13)0.0516 (13)0.0571 (13)0.0078 (11)0.0041 (11)0.0051 (10)
C120.0678 (15)0.0684 (16)0.0573 (14)0.0087 (13)0.0130 (12)0.0074 (12)
C130.0652 (14)0.0717 (16)0.0536 (13)0.0039 (13)0.0107 (11)0.0098 (12)
C140.0699 (15)0.0526 (13)0.0626 (14)0.0059 (12)0.0032 (12)0.0078 (12)
C150.0588 (12)0.0526 (12)0.0511 (12)0.0104 (11)0.0039 (10)0.0007 (10)
Geometric parameters (Å, º) top
Zn1—O2i2.0319 (14)C4—H4A0.9300
Zn1—O22.0319 (14)C5—C61.379 (3)
Zn1—N22.1912 (16)C5—H5A0.9300
Zn1—N2i2.1912 (16)C6—H6A0.9300
Zn1—N3i2.3013 (18)C8—C101.485 (3)
Zn1—N32.3013 (18)C8—C91.498 (3)
O1—C21.338 (3)C9—H9A0.9600
O1—H10.99C9—H9B0.9600
O2—C71.273 (2)C9—H9C0.9600
N1—C71.322 (2)C10—H10A0.9600
N1—N21.402 (2)C10—H10B0.9600
N2—C81.286 (2)C10—H10C0.9600
N3—C151.326 (3)C11—C121.374 (3)
N3—C111.339 (3)C11—H11A0.9300
C1—C61.384 (3)C12—C131.379 (4)
C1—C21.415 (3)C12—H12A0.9300
C1—C71.485 (3)C13—C141.369 (3)
C2—C31.396 (3)C13—H13A0.9300
C3—C41.359 (4)C14—C151.375 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.378 (4)C15—H15A0.9300
O2i—Zn1—O2180.00 (6)C6—C5—H5A120.5
O2i—Zn1—N2103.14 (6)C5—C6—C1122.0 (2)
O2—Zn1—N276.86 (6)C5—C6—H6A119.0
O2i—Zn1—N2i76.86 (6)C1—C6—H6A119.0
O2—Zn1—N2i103.14 (6)O2—C7—N1125.93 (18)
N2—Zn1—N2i180.00 (9)O2—C7—C1118.57 (17)
O2i—Zn1—N3i90.07 (6)N1—C7—C1115.49 (17)
O2—Zn1—N3i89.93 (6)N2—C8—C10119.64 (19)
N2—Zn1—N3i89.38 (6)N2—C8—C9123.4 (2)
N2i—Zn1—N3i90.62 (6)C10—C8—C9116.92 (19)
O2i—Zn1—N389.93 (6)C8—C9—H9A109.5
O2—Zn1—N390.07 (6)C8—C9—H9B109.5
N2—Zn1—N390.62 (6)H9A—C9—H9B109.5
N2i—Zn1—N389.38 (6)C8—C9—H9C109.5
N3i—Zn1—N3180.00 (10)H9A—C9—H9C109.5
C2—O1—H1103.6H9B—C9—H9C109.5
C7—O2—Zn1113.95 (12)C8—C10—H10A109.5
C7—N1—N2112.91 (15)C8—C10—H10B109.5
C8—N2—N1115.16 (17)H10A—C10—H10B109.5
C8—N2—Zn1134.68 (15)C8—C10—H10C109.5
N1—N2—Zn1110.16 (11)H10A—C10—H10C109.5
C15—N3—C11116.73 (19)H10B—C10—H10C109.5
C15—N3—Zn1122.43 (14)N3—C11—C12123.0 (2)
C11—N3—Zn1120.83 (15)N3—C11—H11A118.5
C6—C1—C2118.3 (2)C12—C11—H11A118.5
C6—C1—C7119.76 (18)C11—C12—C13119.3 (2)
C2—C1—C7121.98 (19)C11—C12—H12A120.4
O1—C2—C3118.9 (2)C13—C12—H12A120.4
O1—C2—C1122.2 (2)C14—C13—C12118.2 (2)
C3—C2—C1119.0 (2)C14—C13—H13A120.9
C4—C3—C2120.8 (2)C12—C13—H13A120.9
C4—C3—H3A119.6C13—C14—C15118.9 (2)
C2—C3—H3A119.6C13—C14—H14A120.6
C3—C4—C5121.0 (3)C15—C14—H14A120.6
C3—C4—H4A119.5N3—C15—C14123.9 (2)
C5—C4—H4A119.5N3—C15—H15A118.0
C4—C5—C6118.9 (3)C14—C15—H15A118.0
C4—C5—H5A120.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.991.612.535 (2)154

Experimental details

Crystal data
Chemical formula[Zn(C10H11N2O2)2(C5H5N)2]
Mr605.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.8225 (8), 10.0381 (10), 18.8201 (18)
β (°) 96.21 (4)
V3)1469.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.35 × 0.26 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13028, 3282, 2334
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.097, 0.98
No. of reflections3282
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O22.0319 (14)Zn1—N32.3013 (18)
Zn1—N22.1912 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.991.612.535 (2)154
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20771024), the Natural Science Foundation of Fujian Province (grant No. 2008 J0142) and the Foundation of the State Key Laboratory of Structural Chemistry (grant No. 070032).

References

First citationBai, Y., Dang, D.-B., Cao, X., Duan, C.-Y. & Meng, Q.-J. (2006). Inorg. Chem. Commun. 9, 86–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X.-H. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 33–37.  CAS Google Scholar
First citationDomiano, P., Musatti, A., Nardelli, M., Pelizzi, C. & Predieri, G. (1975). J. Chem. Soc. Dalton Trans. pp. 2357–2360.  CSD CrossRef Web of Science Google Scholar
First citationGao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrove, H., Kelly, T. L., Thompson, L. K., Zhao, L., Xu, Z., Abedin, T. S. M., Miller, D. O., Goeta, A. E., Wilson, C. & Howard, J. A. K. (2004). Inorg. Chem. 43, 4278–4288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Z.-Q., Shi, S.-M., He, H.-W., Yu, D. & Jia, B. (2007). Chin. J. Inorg. Chem. 23, 323–328.  CAS Google Scholar
First citationHu, X., Zhang, L., Liu, L., Liu, G.-F., Jia, D.-Z. & Xu, G.-C. (2006). Inorg. Chim. Acta, 359, 633–641.  Web of Science CrossRef CAS Google Scholar
First citationLi, M.-X., Zhou, J., Yan, L. & Wang, J.-P. (2006). Acta Cryst. E62, m2321–m2322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81–84.  CSD CrossRef Web of Science Google Scholar
First citationLiu, B., Hu, R.-X., Liang, H. & Yu, K.-B. (1999). Chin. J. Struct. Chem. 18, 414–417.  CAS Google Scholar
First citationMa, Y.-X., Ma, Z.-Q., Zhao, G., Ma, Y. & Yang, M. (1989). Polyhedron, 8, 2105–2108.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSamanta, B., Chakraborty, J., Shit, S., Batten, S. R., Jensen, P., Masuda, J. D. & Mitra, S. (2007). Inorg. Chim. Acta, 360, 2471–2481.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, X., Lu, Z.-L., Wang, X.-J., Su, C.-Y., Yu, K.-B., Liu, H.-Q. & Kang, B. (2000). Polyhedron, 19, 1295–1304.  Google Scholar
First citationWu, Y., Shi, S.-M., Jia, B. & Hu, Z.-Q. (2006). Acta Cryst. E62, m648–m649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, G.-C., Feng, Y.-L. & Liu, S.-X. (2000). Chin. J. Struct. Chem. 19, 177–180.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m219-m220
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds