metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m208-m209

catena-Poly[[[tetra­aqua­praseo­dym­ium(III)]-di-μ-nicotinato-κ2O:N;κ2O:N-disilver(I)-di-μ-nicotinato-κ2N:O;κ2N:O] perchlorate monohydrate]

aLaboratory and Facility Management Division, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 28 December 2008; accepted 14 January 2009; online 17 January 2009)

In the title compound, {[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2O}n, the PrIII atom, lying on a twofold rotation axis, has a distorted square-anti­prismatic coordination geometry, defined by four O atoms from four nicotinate (nic) ligands and four water mol­ecules. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms from two nicotinate ligands. The linear coordination is augmented by weak inter­actions with three O atoms from one perchlorate anion, one uncoordinated water mol­ecule and one carboxyl­ate group. Two Pr atoms link two {Ag(nic)2}+ units into a ring, which is further extended into an infinite zigzag chain by sharing the Pr atoms. These chains are further connected into a three-dimensional network via weak Ag⋯O inter­actions, O—H⋯O hydrogen bonds, Ag⋯Ag inter­actions [3.357 (2) Å] and ππ inter­actions between the pyridyl rings [centroid–centroid distance = 3.685 (4) Å].

Related literature

For general background, see: Cheng et al. (2007a[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007a). Dalton Trans. pp. 4059-4066.],b[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007b). Inorg. Chem. 46, 10261-10267.]); Luo et al. (2006[Luo, F., Che, Y. X. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2432-2434.], 2007[Luo, F., Hu, D. X., Xue, L., Che, Y. X. & Zheng, J. M. (2007). Cryst. Growth Des. 7, 851-853.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2O

  • Mr = 1034.59

  • Orthorhombic, C m c a

  • a = 35.396 (3) Å

  • b = 12.3733 (10) Å

  • c = 15.2324 (13) Å

  • V = 6671.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 273 (2) K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.453, Tmax = 0.552

  • 16336 measured reflections

  • 3065 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.06

  • 3065 reflections

  • 227 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected bond lengths (Å)

Pr1—O3i 2.390 (14)
Pr1—O1W 2.477 (14)
Pr1—O2W 2.495 (14)
Pr1—O1 2.504 (13)
Ag1—N2 2.165 (18)
Ag1—N1 2.175 (18)
Ag1—O4ii 2.777 (16)
Ag1—O5 2.81 (3)
Ag1—O3W 2.90 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2iii 0.88 1.79 2.67 (2) 179
O1W—H2W⋯O4iv 0.97 1.68 2.63 (2) 163
O2W—H3W⋯O2v 1.00 1.77 2.77 (2) 176
O2W—H4W⋯O2vi 0.83 1.95 2.76 (2) 162
O3W—H5W⋯O1Wvii 0.82 2.15 2.91 (2) 157
Symmetry codes: (iii) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) x, -y+1, -z+1; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) x, -y+2, -z+1; (vii) [x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nicotinic acid is a multifunctional bridging ligand possessing of O and N donors, which can thus be utilized to construct lanthanide–transition heterometallic complexes, via carboxylate O atoms binding to lanthanides and N atoms binding to transition metal ions such as AgI or CuI (Cheng et al., 2007a,b; Luo et al., 2006, 2007). On the basis of above considerations, we chose nicotinic acid, PrIII and AgI metal ions as building blocks. A new one-dimensional 4 d–4f coordination polymer was obtained from the hydrothermal treatment of Pr6O11, AgNO3, perchloric acid and nicotinic acid in water.

In the title compound (Fig. 1), the PrIII atom, lying on a twofold rotation axis, has a distorted square-antiprismatic coordination geometry, defined by four O atoms from four nicotinate (nic) ligands and four water molecules. The perchlorate anion lies on a mirror plane and the uncoordinated water molecule lies on a twofold rotation axis. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms from two nic ligands. The linear coordination are augmented by weak Ag···O interactions with one O atom from the ClO4- anion, one O atom from the uncoordinated water molecule and one carboxylate O atom from the nic ligand (Table 1). The Ag atom also exhibits an argentophilic interaction, with an Ag···Ag distance of 3.357 (1) Å. The pyridyl rings of the nic ligands coordinating to the Ag atom are almost coplanar and have a dihedral angle of 1.74 (2)°. Two Pr atoms link two Ag(nic)2+ units into a ring, which are further extended into an infinite zigzag chain by sharing the common Pr atoms (Fig. 2). These chains are further connected into a three-dimensional network via the weak Ag···O interactions, O—H···O hydrogen bonds (Table 2), weak Ag···Ag interactions and ππ interactions occurring between the pyridyl rings of neighboring nic ligands [centroid–centroid distance = 3.685 (4) Å].

Related literature top

For general background, see: Cheng et al. (2007a,b); Luo et al. (2006, 2007).

Experimental top

A mixture of Pr6O11 (0.170 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), HClO4 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The pale-purple plate crystals obtained were washed with water and dried in air (yield 46% based on Pr).

Refinement top

H atoms on C atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps and fixed in the refinements, with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.09 Å from atom Pr1 and the deepest hole 0.76 Å from atom Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, extended to show the Pr and Ag coordination environments. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, 3/2 - y, 1 - z; (ii) x, 1/2 + y, 3/2 - z; (iii) 1/2 - x, y, 1/2 - z; (viii) x, 3/2 - y, -1/2 + z; (ix) -x, y, z.]
[Figure 2] Fig. 2. View of the zigzag chain in the title compound.
catena-Poly[[[tetraaquapraseodymium(III)]-di-µ-nicotinato- κ2O:N;κ2O:N-disilver(I)-di-µ-nicotinato- κ2N:O;κ2N:O] perchlorate monohydrate] top
Crystal data top
[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2OF(000) = 4032
Mr = 1034.59Dx = 2.060 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 3121 reflections
a = 35.396 (3) Åθ = 1.4–28°
b = 12.3733 (10) ŵ = 2.76 mm1
c = 15.2324 (13) ÅT = 273 K
V = 6671.2 (10) Å3Plate, pale purple
Z = 80.30 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3065 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2842
Tmin = 0.453, Tmax = 0.552k = 1314
16336 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0479P)2 + 31.5675P]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 1.56 e Å3
27 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2OV = 6671.2 (10) Å3
Mr = 1034.59Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 35.396 (3) ŵ = 2.76 mm1
b = 12.3733 (10) ÅT = 273 K
c = 15.2324 (13) Å0.30 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2478 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.552Rint = 0.049
16336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03627 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0479P)2 + 31.5675P]
where P = (Fo2 + 2Fc2)/3
3065 reflectionsΔρmax = 1.56 e Å3
227 parametersΔρmin = 0.87 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.25001.08315 (12)0.25000.0216 (5)
Ag10.11088 (6)0.60988 (15)0.56463 (12)0.0439 (6)
C20.1570 (6)0.8876 (17)0.4208 (13)0.031 (5)
C60.1963 (6)0.9230 (16)0.3979 (13)0.027 (4)
C30.1260 (7)0.943 (2)0.3901 (17)0.048 (6)
H30.12921.00380.35550.058*
C10.1508 (6)0.7976 (18)0.4725 (13)0.033 (5)
H10.17160.76070.49450.040*
C40.0904 (8)0.908 (2)0.411 (2)0.067 (9)
H40.06920.94390.38990.081*
C50.0867 (7)0.816 (2)0.4631 (18)0.054 (7)
H50.06250.79270.47820.065*
N10.1163 (5)0.7608 (15)0.4925 (12)0.040 (5)
O10.2002 (4)0.9976 (12)0.3439 (9)0.035 (3)
O20.2235 (4)0.8725 (12)0.4344 (9)0.033 (3)
N20.1025 (5)0.4681 (15)0.6456 (12)0.037 (4)
C70.1323 (6)0.4144 (16)0.6770 (14)0.032 (5)
H70.15630.43850.66100.038*
C110.0685 (8)0.434 (2)0.669 (2)0.057 (8)
H110.04740.47180.64890.069*
Cl10.00000.6849 (10)0.5898 (10)0.080 (4)
O70.00000.803 (3)0.588 (4)0.150 (19)
O60.00000.647 (5)0.685 (4)0.25 (4)
C80.1300 (6)0.3255 (16)0.7316 (13)0.030 (5)
C90.0945 (7)0.292 (2)0.7558 (19)0.057 (8)
H90.09140.23440.79410.069*
C100.0631 (8)0.346 (3)0.723 (3)0.082 (12)
H100.03880.32320.73620.098*
C120.1652 (6)0.2676 (16)0.7619 (13)0.028 (4)
O30.1962 (4)0.3019 (12)0.7341 (9)0.032 (3)
O40.1611 (4)0.1878 (13)0.8104 (11)0.044 (4)
O1W0.2180 (4)0.9435 (12)0.1603 (9)0.035 (4)
H1W0.23730.91950.12950.053*
H2W0.19960.89180.18070.053*
O2W0.2515 (5)1.1653 (13)0.3996 (10)0.046 (4)
H3W0.26151.23940.41100.069*
H4W0.24541.14090.44860.069*
O3W0.1776 (8)0.50000.50000.080 (10)
H5W0.19200.50100.45830.120*
O50.0324 (9)0.643 (3)0.565 (3)0.19 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.0227 (9)0.0223 (8)0.0199 (8)0.0000.0012 (6)0.000
Ag10.0482 (12)0.0376 (11)0.0458 (11)0.0044 (9)0.0028 (8)0.0151 (8)
C20.035 (12)0.033 (11)0.024 (10)0.001 (10)0.006 (9)0.001 (9)
C60.032 (12)0.025 (10)0.023 (10)0.000 (9)0.005 (9)0.004 (8)
C30.038 (14)0.051 (15)0.054 (15)0.000 (12)0.009 (12)0.023 (12)
C10.034 (12)0.038 (12)0.028 (10)0.003 (10)0.003 (9)0.004 (10)
C40.035 (15)0.07 (2)0.09 (2)0.003 (14)0.004 (15)0.043 (17)
C50.034 (14)0.060 (17)0.069 (18)0.005 (13)0.012 (12)0.023 (14)
N10.039 (11)0.040 (11)0.040 (10)0.002 (9)0.006 (8)0.014 (9)
O10.034 (8)0.032 (8)0.037 (8)0.000 (7)0.005 (6)0.013 (7)
O20.029 (8)0.038 (8)0.031 (8)0.000 (7)0.000 (6)0.005 (7)
N20.034 (11)0.033 (10)0.045 (11)0.000 (8)0.002 (8)0.010 (8)
C70.030 (12)0.028 (11)0.037 (12)0.006 (9)0.001 (9)0.001 (9)
C110.037 (15)0.054 (17)0.08 (2)0.006 (12)0.003 (13)0.029 (15)
Cl10.040 (6)0.070 (8)0.130 (11)0.0000.0000.009 (7)
O70.17 (5)0.09 (3)0.19 (5)0.0000.0000.04 (3)
O60.45 (13)0.14 (5)0.15 (6)0.0000.0000.02 (4)
C80.030 (12)0.024 (11)0.036 (12)0.002 (9)0.004 (9)0.001 (9)
C90.034 (14)0.054 (16)0.08 (2)0.002 (12)0.005 (13)0.042 (15)
C100.029 (15)0.08 (2)0.13 (3)0.000 (15)0.004 (17)0.06 (2)
C120.026 (11)0.028 (11)0.031 (11)0.000 (9)0.003 (8)0.005 (9)
O30.027 (8)0.031 (8)0.037 (8)0.005 (6)0.002 (6)0.005 (6)
O40.031 (9)0.044 (10)0.056 (10)0.005 (7)0.007 (7)0.023 (8)
O1W0.029 (8)0.035 (8)0.041 (9)0.006 (6)0.006 (7)0.009 (7)
O2W0.071 (12)0.044 (10)0.024 (8)0.021 (9)0.013 (8)0.010 (7)
O3W0.047 (16)0.15 (3)0.040 (14)0.0000.0000.002 (17)
O50.07 (2)0.14 (3)0.35 (6)0.04 (2)0.07 (3)0.12 (3)
Geometric parameters (Å, º) top
Pr1—O3i2.390 (14)N2—C111.32 (3)
Pr1—O1W2.477 (14)N2—C71.34 (3)
Pr1—O2W2.495 (14)C7—C81.38 (3)
Pr1—O12.504 (13)C7—H70.9300
Ag1—N22.165 (18)C11—C101.37 (4)
Ag1—N12.175 (18)C11—H110.9300
Ag1—O4ii2.777 (16)Cl1—O5iv1.31 (3)
Ag1—O52.81 (3)Cl1—O51.31 (3)
Ag1—O3W2.90 (2)Cl1—O71.46 (4)
Ag1—Ag1iii3.357 (2)Cl1—O61.52 (5)
C2—C31.37 (3)C8—C91.37 (3)
C2—C11.38 (3)C8—C121.51 (3)
C2—C61.50 (3)C9—C101.39 (4)
C6—O11.24 (2)C9—H90.9300
C6—O21.27 (3)C10—H100.9300
C3—C41.37 (4)C12—O41.24 (2)
C3—H30.9300C12—O31.25 (2)
C1—N11.34 (3)O1W—H1W0.88
C1—H10.9300O1W—H2W0.97
C4—C51.39 (4)O2W—H3W1.00
C4—H40.9300O2W—H4W0.83
C5—N11.33 (3)O3W—H5W0.82
C5—H50.9300
O3i—Pr1—O3v106.9 (7)C3—C4—H4120.8
O3i—Pr1—O1W146.7 (5)C5—C4—H4120.8
O3v—Pr1—O1W89.7 (5)N1—C5—C4123 (2)
O3i—Pr1—O1Wvi89.7 (5)N1—C5—H5118.7
O3v—Pr1—O1Wvi146.7 (5)C4—C5—H5118.7
O1W—Pr1—O1Wvi91.5 (7)C5—N1—C1118 (2)
O3i—Pr1—O2W69.4 (5)C5—N1—Ag1122.9 (16)
O3v—Pr1—O2W82.3 (5)C1—N1—Ag1119.1 (15)
O1W—Pr1—O2W142.9 (5)C6—O1—Pr1140.4 (13)
O1Wvi—Pr1—O2W76.7 (5)C11—N2—C7118 (2)
O3i—Pr1—O2Wvi82.3 (5)C11—N2—Ag1122.3 (16)
O3v—Pr1—O2Wvi69.4 (5)C7—N2—Ag1119.9 (14)
O1W—Pr1—O2Wvi76.7 (5)N2—C7—C8124 (2)
O1Wvi—Pr1—O2Wvi142.9 (5)N2—C7—H7117.8
O2W—Pr1—O2Wvi131.9 (7)C8—C7—H7117.8
O3i—Pr1—O1139.0 (5)N2—C11—C10123 (2)
O3v—Pr1—O175.5 (5)N2—C11—H11118.7
O1W—Pr1—O172.5 (5)C10—C11—H11118.7
O1Wvi—Pr1—O173.2 (5)O5iv—Cl1—O5122 (4)
O2W—Pr1—O170.5 (5)O5iv—Cl1—O7113.2 (18)
O2Wvi—Pr1—O1132.8 (5)O5—Cl1—O7113.2 (18)
O3i—Pr1—O1vi75.5 (5)O5iv—Cl1—O698 (2)
O3v—Pr1—O1vi139.0 (5)O5—Cl1—O698 (2)
O1W—Pr1—O1vi73.2 (5)O7—Cl1—O6109 (3)
O1Wvi—Pr1—O1vi72.5 (5)C9—C8—C7117 (2)
O2W—Pr1—O1vi132.8 (5)C9—C8—C12122.1 (19)
O2Wvi—Pr1—O1vi70.5 (5)C7—C8—C12120.9 (19)
O1—Pr1—O1vi129.9 (7)C8—C9—C10119 (2)
N2—Ag1—N1174.6 (7)C8—C9—H9120.3
N2—Ag1—Ag1iii71.2 (5)C10—C9—H9120.3
N1—Ag1—Ag1iii113.5 (5)C11—C10—C9119 (3)
C3—C2—C1118 (2)C11—C10—H10120.5
C3—C2—C6121.2 (19)C9—C10—H10120.5
C1—C2—C6121 (2)O4—C12—O3124.9 (19)
O1—C6—O2124.6 (19)O4—C12—C8117.7 (18)
O1—C6—C2118.3 (19)O3—C12—C8117.4 (18)
O2—C6—C2117.1 (17)C12—O3—Pr1i150.2 (13)
C4—C3—C2120 (2)Pr1—O1W—H1W100.1
C4—C3—H3119.9Pr1—O1W—H2W126.4
C2—C3—H3119.9H1W—O1W—H2W118.2
N1—C1—C2123 (2)Pr1—O2W—H3W122.7
N1—C1—H1118.3Pr1—O2W—H4W131.7
C2—C1—H1118.3H3W—O2W—H4W105.6
C3—C4—C5118 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y, z; (v) x, y+3/2, z1/2; (vi) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2vi0.881.792.67 (2)179
O1W—H2W···O4iii0.971.682.63 (2)163
O2W—H3W···O2vii1.001.772.77 (2)176
O2W—H4W···O2viii0.831.952.76 (2)162
O3W—H5W···O1Wix0.822.152.91 (2)157
Symmetry codes: (iii) x, y+1, z+1; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y+2, z+1; (ix) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2O
Mr1034.59
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)273
a, b, c (Å)35.396 (3), 12.3733 (10), 15.2324 (13)
V3)6671.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.453, 0.552
No. of measured, independent and
observed [I > 2σ(I)] reflections
16336, 3065, 2478
Rint0.049
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.06
No. of reflections3065
No. of parameters227
No. of restraints27
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0479P)2 + 31.5675P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.56, 0.87

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pr1—O3i2.390 (14)Ag1—N12.175 (18)
Pr1—O1W2.477 (14)Ag1—O4ii2.777 (16)
Pr1—O2W2.495 (14)Ag1—O52.81 (3)
Pr1—O12.504 (13)Ag1—O3W2.90 (2)
Ag1—N22.165 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.881.792.67 (2)179
O1W—H2W···O4iv0.971.682.63 (2)163
O2W—H3W···O2v1.001.772.77 (2)176
O2W—H4W···O2vi0.831.952.76 (2)162
O3W—H5W···O1Wvii0.822.152.91 (2)157
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1/2, z; (vi) x, y+2, z+1; (vii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Guangdong Ocean University for supporting this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. W., Zheng, S. T. & Yang, G. Y. (2007a). Dalton Trans. pp. 4059–4066.  Web of Science CSD CrossRef Google Scholar
First citationCheng, J. W., Zheng, S. T. & Yang, G. Y. (2007b). Inorg. Chem. 46, 10261–10267.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2432–2434.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Hu, D. X., Xue, L., Che, Y. X. & Zheng, J. M. (2007). Cryst. Growth Des. 7, 851–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m208-m209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds