organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Hydr­­oxy-2,2-di­phenyl­ethyl)(meth­yl)amino]-N,N-di­methyl­ethanaminium bromide

aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 19 December 2008; accepted 19 January 2009; online 23 January 2009)

The title compound, C19H27N2O+·Br, is the hydro­bromide of the trapping product of lithia­ted N,N,N′,N′-tetramethylethylenediamine (TMEDA) with benzophenone. Thereby, the N atom of the NMe2 group is selectively protonated and the respective trapping product represents a potential tridentate ligand with one O and two N donor atoms. The H atoms at N (H2N) and O (H1O) are involved in hydrogen bonds with the Br. The mol­ecular structure shows all donor atoms to be arranged on one side of the mol­ecule, thus indicating a potential threefold coordination of a Lewis acid.

Related literature

For related literature on direct deprotonation of tertiary amines, see: Strohmann & Gessner (2007a[Strohmann, C. & Gessner, V. H. (2007a). J. Am. Chem. Soc. 129, 8952-8953.],b[Strohmann, C. & Gessner, V. H. (2007b). Angew. Chem. Int. Ed. 46, 4566-4569.],c[Strohmann, C. & Gessner, V. H. (2007c). Angew. Chem. Int. Ed. 46, 8281-8283.], 2008a[Strohmann, C. & Gessner, V. H. (2008a). J. Am. Chem. Soc. 130, 11719-11725.],b[Strohmann, C. & Gessner, V. H. (2008b). Chem. Asian J. 3, 1929-1934.]), Gessner & Strohmann (2008[Gessner, V. H. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 14412-14413.]); Bojer et al. (2007[Bojer, D., Kamps, I., Tian, X., Hepp, A., Pape, T., Fröhlich, R. & Mitzel, N. W. (2007). Angew. Chem. Int. Ed. 46, 4176-4178.]); Karsch (1996[Karsch, H. H. (1996). Chem. Ber. 129, 483-484.]); Strohmann et al. (2008[Strohmann, C., Damme, A. & Gessner, V. (2008). Chem. Commun. pp. 3381-3383.]); Köhler et al. (1987[Köhler, F. H., Hertkorn, N. & Blümel, J. (1987). Chem. Ber. 120, 2081-2082.]); Arnold et al. (2002[Arnold, J., Knapp, V., Schmidt, J. A. R. & Shafir, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3273-3274.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27N2O+·Br

  • Mr = 379.34

  • Orthorhombic, P b c a

  • a = 7.119 (2) Å

  • b = 15.515 (3) Å

  • c = 33.585 (7) Å

  • V = 3710 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 173 (2) K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.440, Tmax = 0.635

  • 78737 measured reflections

  • 3640 independent reflections

  • 3200 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.07

  • 3640 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Br 0.87 (4) 2.52 (4) 3.276 (3) 145 (4)
O—H1O⋯Br 0.69 (3) 2.76 (3) 3.398 (2) 156 (3)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to their application in many fields of chemistry, the preparation of nitrogen ligands is still of great interest in synthetic chemistry. Recent investigations have proved the direct deprotonation of methylamines to be a synthetically very useful method for functionalizations and thus for the synthesis of nitrogen ligands. Further donor atoms as well as further stereocenters can easily be introduced to the molecule. Only few tertiary methylamines are known for their reactivity towards such a direct lithiation reaction, amongst (R,R)-TMCDA (Strohmann & Gessner, 2007a,c, 2008a; Strohmann et al., 2008), PMDTA (Strohmann & Gessner, 2007b) and TMEDA (Gessner & Strohmann, 2008; Köhler et al., 1987). Generally, this type of reaction is an undesired side reaction resulting in the loss of base and leading to side products, e.g. in deprotonation or addition reactions with lithiumalkyls (Arnold et al., 2002). However, this decomposition of the Lewis base can also be used synthetically for the preparation of new ligand systems (Karsch, 1996; Bojer et al., 2007; Strohmann & Gessner, 2008b).

The title compound 2-[(2'-Hydroxy-2',2'-diphenylethyl)-N'-methyl(amino)]-N,N-dimethylethanaminium bromide can be synthesized by direct deprotonation of TMEDA with tert-butyllithium and the subsequent trapping reaction with benzophenone. The yield of this lithiation reaction is limited due to the competitive deprotonation of the ethylene bridge of the ligand. Treatment of the resulting amino alcohol with lithiumbromide under acidic conditions gives the hydrobromide as colorless crystals. The structure indicates a potential threefold coordination as all donor atoms (two N atoms and one oxygen) are arranged at the same side of the molecule.

2-[(2'-Hydroxy-2',2'-diphenylethyl)-N'-methyl(amino)]-N,N-dimethylethanaminium bromide crystallizes in the othorhombic crystal system, space group Pbca. The asymmetric unit contains only one molecule of the monomeric compound.

Related literature top

For related literature on direct deprotonation of tertiary amines, see: Strohmann & Gessner (2007a,b,c, 2008a,b), Gessner & Strohmann (2008); Bojer et al. (2007); Karsch (1996); Strohmann et al. (2008); Köhler et al. (1987); Arnold et al. (2002).

Experimental top

2-(2-Dimethylaminoethyl)(methyl)amino-1,1-diphenylethanol and an equivalent amount of LiBr were dissolved in a mixture of acetone and a few trops acetic acid and stored at room temperature for 24 h. After evaporation of the solvent a crystalline solid remained, suitable for X-ray studies.

1H NMR (400.1 MHz, D2O): δ = 2.17 (s, 3H; N(CH3)CH2), 2.42 (s, 6H; N(CH3)2), 2,68 (t, 3JHH = 6.16 Hz, 3H; CH2N), 2.95 (t, 3JHH = 6.14 Hz, 2H; CH2N), 3.43 (s, 2H; NCH2C(OH)Ph2), 6.60–7.10 (br, 2H; NH and OH), 7.20–7.24 (m, 2H; Hpara), 7.24–2.33 (m, 4H; Harom), 7.41–2.43 (m, 4H; Harom).

{1H}13C NMR (100.6 MHz, D2O): δ = 42.4 (HN(CH3)2), 43.7 (N(CH3)CH2), 52.9 (CH2N(H)(CH3)2), 55.1 (CH2CH2N(CH3)CH2), 66.6 (NCH2C(OH)Ph2), 78.1 (CPh2), 125.9 (Cmeta), 1276.4 (Cpara), 128.6 (Cortho), 145.3 (Cipso).

Refinement top

Refinement was accomplished by full-matrix least-squares methods (based on Fo2, SHELXL97); anisotropic thermal parameters for all non-H atoms in the final cycles; the H atoms were calculated into idealized positions and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH and CH2 groups and 1.5Ueq(C) for methyl groups. The positions of H2N and H1O were determined from the difference Fourier map and they were refined without constraints.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of 2-[(2'-Hydroxy-2',2'-diphenylethyl)-N'-methyl(amino)]-N,N-dimethylethanaminium bromide. Thermal ellipsoids are drawn at the 50% probability level.
2-[(2-Hydroxy-2,2-diphenylethyl)(methyl)amino]-N,N-dimethylethanaminium bromide top
Crystal data top
C19H27N2O+·BrF(000) = 1584
Mr = 379.34Dx = 1.358 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 1.2–26°
a = 7.119 (2) ŵ = 2.22 mm1
b = 15.515 (3) ÅT = 173 K
c = 33.585 (7) ÅNeedle, colourless
V = 3710 (1) Å30.4 × 0.2 × 0.2 mm
Z = 8
Data collection top
Bruker APEX CCD
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube3200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 26°, θmin = 1.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.440, Tmax = 0.635k = 1919
78737 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0504P)2 + 4.0375P]
where P = (Fo2 + 2Fc2)/3
3640 reflections(Δ/σ)max = 0.003
219 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C19H27N2O+·BrV = 3710 (1) Å3
Mr = 379.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.119 (2) ŵ = 2.22 mm1
b = 15.515 (3) ÅT = 173 K
c = 33.585 (7) Å0.4 × 0.2 × 0.2 mm
Data collection top
Bruker APEX CCD
diffractometer
3640 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
3200 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.635Rint = 0.064
78737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.49 e Å3
3640 reflectionsΔρmin = 0.43 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.55743 (4)0.697337 (19)0.564819 (9)0.03232 (11)
C10.5689 (4)0.93459 (17)0.63574 (8)0.0250 (6)
C20.6972 (4)0.88169 (17)0.66284 (8)0.0250 (6)
C30.8583 (4)0.9173 (2)0.67970 (9)0.0320 (7)
H30.88920.97570.67430.038*
C40.9747 (5)0.8691 (2)0.70430 (9)0.0406 (8)
H41.08390.89460.71550.049*
C50.9321 (5)0.7848 (2)0.71242 (10)0.0450 (9)
H51.01220.75160.72910.054*
C60.7726 (5)0.7483 (2)0.69634 (10)0.0429 (8)
H60.74270.69000.70210.052*
C70.6550 (5)0.79621 (19)0.67180 (9)0.0332 (7)
H70.54510.77040.66110.040*
C80.4435 (4)0.99595 (17)0.65971 (8)0.0263 (6)
C90.4565 (4)1.0055 (2)0.70069 (9)0.0335 (7)
H90.54760.97360.71510.040*
C100.3373 (5)1.0615 (2)0.72079 (9)0.0380 (7)
H100.34731.06710.74890.046*
C110.2045 (5)1.1091 (2)0.70046 (10)0.0372 (7)
H110.12501.14800.71430.045*
C120.1884 (4)1.09930 (19)0.65969 (9)0.0337 (7)
H120.09651.13120.64540.040*
C130.3059 (4)1.04315 (18)0.63960 (9)0.0290 (6)
H130.29281.03660.61160.035*
C140.6829 (4)0.98676 (17)0.60473 (8)0.0285 (6)
H14A0.59871.02850.59140.034*
H14B0.78241.01980.61860.034*
C150.6945 (5)0.9484 (2)0.53493 (9)0.0402 (8)
H15A0.73151.00660.52670.060*
H15B0.55720.94430.53550.060*
H15C0.74450.90620.51600.060*
C160.9753 (4)0.93415 (19)0.57482 (9)0.0289 (6)
H16A1.02050.93330.60270.035*
H16B1.01680.98900.56260.035*
C171.0617 (4)0.85949 (18)0.55238 (9)0.0288 (6)
H17A1.03600.86640.52360.035*
H17B1.19950.86030.55620.035*
C181.0397 (5)0.70427 (19)0.53833 (10)0.0345 (7)
H18A1.17610.69600.53920.052*
H18B1.00180.71980.51120.052*
H18C0.97670.65080.54620.052*
C191.0432 (4)0.7534 (2)0.60756 (9)0.0344 (7)
H19A0.98050.70020.61610.052*
H19B1.00710.80070.62530.052*
H19C1.17960.74530.60860.052*
N10.7695 (3)0.93059 (15)0.57460 (7)0.0262 (5)
N20.9858 (4)0.77440 (16)0.56609 (7)0.0260 (5)
H2N0.864 (6)0.779 (2)0.5669 (10)0.044 (10)*
O0.4411 (3)0.88041 (14)0.61458 (7)0.0298 (5)
H1O0.494 (5)0.849 (2)0.6050 (10)0.024 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.02792 (17)0.03281 (18)0.03624 (18)0.00315 (12)0.00142 (12)0.00227 (12)
C10.0251 (14)0.0217 (13)0.0283 (14)0.0032 (11)0.0027 (12)0.0014 (11)
C20.0242 (14)0.0256 (14)0.0252 (13)0.0005 (11)0.0033 (11)0.0001 (11)
C30.0301 (16)0.0327 (15)0.0333 (16)0.0008 (13)0.0003 (13)0.0044 (12)
C40.0297 (17)0.062 (2)0.0301 (16)0.0028 (16)0.0057 (13)0.0061 (15)
C50.047 (2)0.058 (2)0.0308 (17)0.0190 (17)0.0028 (15)0.0079 (15)
C60.048 (2)0.0371 (17)0.0432 (18)0.0083 (16)0.0076 (16)0.0158 (15)
C70.0315 (16)0.0310 (15)0.0371 (16)0.0041 (13)0.0020 (14)0.0034 (13)
C80.0249 (14)0.0217 (13)0.0324 (15)0.0050 (11)0.0008 (12)0.0002 (11)
C90.0331 (17)0.0347 (16)0.0327 (16)0.0002 (14)0.0033 (13)0.0013 (13)
C100.0387 (18)0.0446 (18)0.0309 (16)0.0019 (15)0.0036 (14)0.0070 (14)
C110.0328 (17)0.0306 (15)0.0481 (19)0.0004 (14)0.0075 (14)0.0079 (14)
C120.0261 (15)0.0286 (15)0.0464 (18)0.0006 (13)0.0023 (13)0.0022 (13)
C130.0281 (15)0.0266 (14)0.0322 (15)0.0029 (12)0.0012 (12)0.0007 (12)
C140.0335 (16)0.0203 (13)0.0316 (15)0.0005 (12)0.0005 (13)0.0006 (11)
C150.0403 (18)0.0470 (19)0.0334 (16)0.0054 (16)0.0093 (14)0.0049 (14)
C160.0276 (15)0.0301 (15)0.0289 (14)0.0067 (12)0.0014 (12)0.0005 (12)
C170.0252 (15)0.0317 (15)0.0295 (14)0.0032 (12)0.0022 (12)0.0041 (12)
C180.0328 (17)0.0323 (16)0.0384 (17)0.0026 (13)0.0037 (14)0.0078 (13)
C190.0347 (17)0.0362 (16)0.0325 (15)0.0051 (14)0.0004 (13)0.0063 (13)
N10.0266 (12)0.0263 (12)0.0255 (11)0.0010 (10)0.0018 (10)0.0005 (9)
N20.0198 (12)0.0276 (12)0.0306 (13)0.0001 (10)0.0033 (10)0.0010 (10)
O0.0274 (11)0.0255 (11)0.0365 (12)0.0004 (9)0.0045 (9)0.0082 (9)
Geometric parameters (Å, º) top
C1—O1.428 (3)C13—H130.9500
C1—C21.528 (4)C14—N11.471 (4)
C1—C81.534 (4)C14—H14A0.9900
C1—C141.549 (4)C14—H14B0.9900
C2—C71.393 (4)C15—N11.462 (4)
C2—C31.393 (4)C15—H15A0.9800
C3—C41.388 (4)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.370 (5)C16—N11.466 (4)
C4—H40.9500C16—C171.513 (4)
C5—C61.379 (5)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—C71.390 (5)C17—N21.499 (4)
C6—H60.9500C17—H17A0.9900
C7—H70.9500C17—H17B0.9900
C8—C91.387 (4)C18—N21.483 (4)
C8—C131.397 (4)C18—H18A0.9800
C9—C101.389 (4)C18—H18B0.9800
C9—H90.9500C18—H18C0.9800
C10—C111.380 (5)C19—N21.487 (4)
C10—H100.9500C19—H19A0.9800
C11—C121.382 (4)C19—H19B0.9800
C11—H110.9500C19—H19C0.9800
C12—C131.383 (4)N2—H2N0.87 (4)
C12—H120.9500O—H1O0.69 (3)
O—C1—C2111.2 (2)C1—C14—H14A109.2
O—C1—C8104.8 (2)N1—C14—H14B109.2
C2—C1—C8111.6 (2)C1—C14—H14B109.2
O—C1—C14107.9 (2)H14A—C14—H14B107.9
C2—C1—C14111.6 (2)N1—C15—H15A109.5
C8—C1—C14109.5 (2)N1—C15—H15B109.5
C7—C2—C3117.8 (3)H15A—C15—H15B109.5
C7—C2—C1120.7 (3)N1—C15—H15C109.5
C3—C2—C1121.4 (2)H15A—C15—H15C109.5
C4—C3—C2121.3 (3)H15B—C15—H15C109.5
C4—C3—H3119.3N1—C16—C17112.0 (2)
C2—C3—H3119.3N1—C16—H16A109.2
C5—C4—C3120.0 (3)C17—C16—H16A109.2
C5—C4—H4120.0N1—C16—H16B109.2
C3—C4—H4120.0C17—C16—H16B109.2
C4—C5—C6119.7 (3)H16A—C16—H16B107.9
C4—C5—H5120.2N2—C17—C16112.0 (2)
C6—C5—H5120.2N2—C17—H17A109.2
C5—C6—C7120.6 (3)C16—C17—H17A109.2
C5—C6—H6119.7N2—C17—H17B109.2
C7—C6—H6119.7C16—C17—H17B109.2
C2—C7—C6120.5 (3)H17A—C17—H17B107.9
C2—C7—H7119.8N2—C18—H18A109.5
C6—C7—H7119.8N2—C18—H18B109.5
C9—C8—C13118.0 (3)H18A—C18—H18B109.5
C9—C8—C1123.3 (3)N2—C18—H18C109.5
C13—C8—C1118.7 (2)H18A—C18—H18C109.5
C8—C9—C10120.6 (3)H18B—C18—H18C109.5
C8—C9—H9119.7N2—C19—H19A109.5
C10—C9—H9119.7N2—C19—H19B109.5
C11—C10—C9120.8 (3)H19A—C19—H19B109.5
C11—C10—H10119.6N2—C19—H19C109.5
C9—C10—H10119.6H19A—C19—H19C109.5
C12—C11—C10119.2 (3)H19B—C19—H19C109.5
C12—C11—H11120.4C15—N1—C16111.3 (2)
C10—C11—H11120.4C15—N1—C14111.2 (2)
C11—C12—C13120.1 (3)C16—N1—C14113.2 (2)
C11—C12—H12119.9C18—N2—C19110.9 (2)
C13—C12—H12119.9C18—N2—C17111.1 (2)
C12—C13—C8121.2 (3)C19—N2—C17112.5 (2)
C12—C13—H13119.4C18—N2—H2N110 (2)
C8—C13—H13119.4C19—N2—H2N105 (2)
N1—C14—C1111.9 (2)C17—N2—H2N107 (2)
N1—C14—H14A109.2C1—O—H1O107 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br0.87 (4)2.52 (4)3.276 (3)145 (4)
O—H1O···Br0.69 (3)2.76 (3)3.398 (2)156 (3)

Experimental details

Crystal data
Chemical formulaC19H27N2O+·Br
Mr379.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)7.119 (2), 15.515 (3), 33.585 (7)
V3)3710 (1)
Z8
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1999)
Tmin, Tmax0.440, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
78737, 3640, 3200
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.07
No. of reflections3640
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.43

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br0.87 (4)2.52 (4)3.276 (3)145 (4)
O—H1O···Br0.69 (3)2.76 (3)3.398 (2)156 (3)
 

Acknowledgements

The authors are grateful to the Deutsche Forschungs­gemeinschaft and the Fonds der Chemischen Industrie for financial support and the award of a scholarship (VHG). CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.

References

First citationArnold, J., Knapp, V., Schmidt, J. A. R. & Shafir, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3273–3274.  Web of Science CSD CrossRef Google Scholar
First citationBojer, D., Kamps, I., Tian, X., Hepp, A., Pape, T., Fröhlich, R. & Mitzel, N. W. (2007). Angew. Chem. Int. Ed. 46, 4176–4178.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGessner, V. H. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 14412–14413.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKarsch, H. H. (1996). Chem. Ber. 129, 483–484.  CrossRef CAS Web of Science Google Scholar
First citationKöhler, F. H., Hertkorn, N. & Blümel, J. (1987). Chem. Ber. 120, 2081–2082.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrohmann, C., Damme, A. & Gessner, V. (2008). Chem. Commun. pp. 3381–3383.  Web of Science CSD CrossRef Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2007a). J. Am. Chem. Soc. 129, 8952–8953.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2007b). Angew. Chem. Int. Ed. 46, 4566–4569.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2007c). Angew. Chem. Int. Ed. 46, 8281–8283.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2008a). J. Am. Chem. Soc. 130, 11719–11725.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2008b). Chem. Asian J. 3, 1929–1934.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds