metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­chlorido(1,10-phenanthroline-κ2N,N′)platinum(IV) aceto­nitrile hemisolvate

aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 7 January 2009; accepted 19 January 2009; online 23 January 2009)

The asymmetric unit of the title compound, [PtCl4(C12H8N2)]·0.5CH3CN, contains two crystallographically independent PtIV complexes with very similar geometry and one solvent mol­ecule. In the complexes, each PtIV ion is six-coordinated in a distorted octa­hedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. Because of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are slightly shorter than those trans to the Cl atom. The compound displays numerous inter­molecular ππ inter­actions between six-membered rings, with a shortest centroid-to-centroid distance of 3.654 Å. There are also weak intra- and inter­molecular C—H⋯Cl hydrogen bonds.

Related literature

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977[Buse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072-1076.]); Fanizzi et al. (1996[Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173-3182.]). For related Pt–bipyridine complexes, see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl4(C12H8N2)]·0.5C2H3N

  • Mr = 1075.24

  • Triclinic, [P \overline 1]

  • a = 7.671 (5) Å

  • b = 12.619 (8) Å

  • c = 16.63 (1) Å

  • α = 89.70 (1)°

  • β = 87.46 (1)°

  • γ = 78.797 (7)°

  • V = 1577 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.56 mm−1

  • T = 293 (2) K

  • 0.55 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.035, Tmax = 0.057

  • 8700 measured reflections

  • 5856 independent reflections

  • 5250 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.09

  • 5856 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 1.97 e Å−3

  • Δρmin = −2.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.68 3.243 (7) 120
C1—H1⋯Cl6 0.93 2.75 3.632 (7) 158
C6—H6⋯Cl8i 0.93 2.74 3.637 (8) 163
C10—H10⋯Cl1 0.93 2.72 3.275 (9) 120
C13—H13⋯Cl6 0.93 2.68 3.248 (9) 120
C15—H15⋯Cl1ii 0.93 2.79 3.669 (9) 159
C21—H21⋯Cl2iii 0.93 2.72 3.451 (9) 136
C22—H22⋯Cl5 0.93 2.74 3.297 (9) 120
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PtCl4(C12H8N2)].0.5CH3CN, contains two crystallographically independent PtIV complexes with identical geometry and a CH3CN solvent molecule (Fig. 1 and 2). In the complexes, each Pt4+ ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. The main contributions to the distortion are the tight N—Pt—N chelate angles (82.0 (2)° and 80.9 (2)°), which result in non-linear trans axes (Cl—Pt—N = 174.7 (2)–175.7 (2)°, Cl—Pt—Cl = 177.57 (8)° and 175.68 (7)°). Because of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom (lengths: 2.294 (2), 2.297 (2), 2.301 (2) and 2.298 (2) Å; mean length: 2.298 (2) Å) are slightly shorter than bond lengths to mutually trans Cl atoms (lengths: 2.322 (2), 2.312 (2), 2.302 (2) and 2.309 (2) Å; mean length: 2.311 (2) Å). The compound displays numerous intermolecular ππ interactions between six-membered rings, with a shortest centroid–centroid distance of 3.654 Å. There are also weak intra- and intermolecular C—H···Cl hydrogen bonds (Table 1).

Related literature top

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977); Fanizzi et al. (1996). For related Pt–bipyridine complexes, see: Hambley (1986); Hojjat Kashani et al. (2008).

Experimental top

To a solution of K2PtCl6 (0.2026 g, 0.417 mmol) in H2O (10 ml) was added 1,10-phenanthroline (0.2162 g, 1.200 mmol) in MeOH (10 ml), and stirred for 5 h at room temperature. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1710 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (aromatic) or 0.96 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Tetrachlorido(1,10-phenanthroline-κ2N,N')platinum(IV) acetonitrile hemisolvate top
Crystal data top
[PtCl4(C12H8N2)]·0.5C2H3NZ = 2
Mr = 1075.24F(000) = 1004
Triclinic, P1Dx = 2.264 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.671 (5) ÅCell parameters from 907 reflections
b = 12.619 (8) Åθ = 3.0–26.4°
c = 16.63 (1) ŵ = 9.56 mm1
α = 89.70 (1)°T = 293 K
β = 87.46 (1)°Rod, yellow
γ = 78.797 (7)°0.55 × 0.30 × 0.30 mm
V = 1577 (2) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5856 independent reflections
Radiation source: fine-focus sealed tube5250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.7°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.035, Tmax = 0.057k = 1514
8700 measured reflectionsl = 920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0696P)2 + 1.1983P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5856 reflectionsΔρmax = 1.97 e Å3
372 parametersΔρmin = 2.05 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (3)
Crystal data top
[PtCl4(C12H8N2)]·0.5C2H3Nγ = 78.797 (7)°
Mr = 1075.24V = 1577 (2) Å3
Triclinic, P1Z = 2
a = 7.671 (5) ÅMo Kα radiation
b = 12.619 (8) ŵ = 9.56 mm1
c = 16.63 (1) ÅT = 293 K
α = 89.70 (1)°0.55 × 0.30 × 0.30 mm
β = 87.46 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5250 reflections with I > 2σ(I)
Tmin = 0.035, Tmax = 0.057Rint = 0.027
8700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.09Δρmax = 1.97 e Å3
5856 reflectionsΔρmin = 2.05 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.22405 (3)0.743662 (18)0.348926 (14)0.03174 (12)
Cl10.1723 (3)0.90349 (15)0.27957 (12)0.0592 (6)
Cl20.4276 (3)0.66204 (15)0.25175 (12)0.0586 (6)
Cl30.4436 (2)0.80367 (14)0.41769 (12)0.0440 (4)
Cl40.0011 (3)0.68354 (17)0.28563 (13)0.0604 (6)
N10.2550 (6)0.6080 (4)0.4184 (3)0.0259 (10)
N20.0449 (7)0.8027 (4)0.4402 (3)0.0329 (12)
C10.3525 (9)0.5108 (5)0.4027 (4)0.0336 (14)
H10.41540.49820.35340.040*
C20.3624 (9)0.4275 (5)0.4583 (4)0.0379 (15)
H20.43160.36020.44560.046*
C30.2724 (9)0.4430 (6)0.5313 (5)0.0406 (17)
H30.28060.38710.56850.049*
C40.1658 (9)0.5460 (5)0.5493 (4)0.0336 (14)
C50.0584 (10)0.5727 (7)0.6212 (4)0.0442 (18)
H50.06360.52170.66210.053*
C60.0497 (10)0.6690 (7)0.6318 (4)0.0466 (18)
H60.11840.68340.67940.056*
C70.0609 (9)0.7500 (6)0.5710 (4)0.0408 (16)
C80.1779 (10)0.8520 (7)0.5756 (6)0.053 (2)
H80.25170.87090.62130.064*
C90.1814 (10)0.9223 (7)0.5128 (6)0.056 (2)
H90.25940.98870.51510.067*
C100.0692 (10)0.8948 (6)0.4460 (5)0.0457 (18)
H100.07450.94320.40340.055*
C110.0471 (8)0.7290 (5)0.5010 (4)0.0321 (14)
C120.1595 (8)0.6274 (5)0.4905 (4)0.0272 (12)
Pt20.66093 (3)0.20111 (2)0.213982 (14)0.03046 (12)
Cl50.6389 (3)0.17427 (19)0.35077 (11)0.0554 (5)
Cl60.6342 (3)0.38351 (16)0.23497 (13)0.0553 (5)
Cl70.9662 (2)0.17316 (15)0.21686 (12)0.0454 (4)
Cl80.3574 (2)0.21957 (18)0.20343 (12)0.0523 (5)
N30.6888 (7)0.2128 (4)0.0925 (3)0.0320 (12)
N40.6814 (7)0.0429 (4)0.1845 (3)0.0317 (12)
C130.6842 (12)0.3021 (7)0.0489 (5)0.052 (2)
H130.66230.36940.07400.063*
C140.7131 (14)0.2939 (9)0.0360 (5)0.068 (3)
H140.71110.35580.06680.081*
C150.7435 (13)0.1957 (8)0.0718 (5)0.061 (2)
H150.76430.19100.12730.073*
C160.7445 (10)0.1033 (6)0.0286 (4)0.0454 (17)
C170.7660 (13)0.0050 (8)0.0609 (5)0.065 (3)
H170.78490.01520.11620.078*
C180.7596 (13)0.0894 (8)0.0150 (6)0.070 (3)
H180.77680.15750.03860.084*
C190.7265 (10)0.0793 (6)0.0715 (5)0.0491 (19)
C200.7087 (12)0.1636 (7)0.1247 (7)0.060 (2)
H200.72160.23390.10540.073*
C210.6734 (12)0.1430 (7)0.2032 (7)0.064 (3)
H210.65760.19890.23770.077*
C220.6599 (10)0.0387 (6)0.2342 (5)0.0478 (19)
H220.63620.02580.28900.057*
C230.7100 (8)0.0249 (5)0.1044 (4)0.0338 (14)
C240.7161 (8)0.1149 (5)0.0555 (4)0.0340 (14)
N50.225 (2)0.4009 (12)0.0069 (10)0.153 (6)
C250.0741 (19)0.4592 (9)0.1403 (7)0.094 (4)
H26A0.14040.50480.16690.140*
H26B0.06920.39650.17260.140*
H26C0.04450.49840.13280.140*
C260.159 (2)0.4266 (10)0.0640 (8)0.098 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.04667 (19)0.02322 (16)0.02332 (16)0.00292 (11)0.00364 (11)0.00038 (10)
Cl10.1033 (17)0.0321 (9)0.0373 (10)0.0022 (9)0.0031 (11)0.0082 (8)
Cl20.0919 (15)0.0362 (9)0.0423 (11)0.0070 (9)0.0334 (11)0.0047 (8)
Cl30.0463 (9)0.0337 (8)0.0532 (11)0.0113 (7)0.0004 (8)0.0019 (8)
Cl40.0792 (14)0.0493 (11)0.0543 (12)0.0101 (10)0.0322 (11)0.0024 (9)
N10.030 (3)0.028 (3)0.021 (2)0.008 (2)0.002 (2)0.001 (2)
N20.036 (3)0.030 (3)0.030 (3)0.001 (2)0.000 (2)0.004 (2)
C10.036 (3)0.030 (3)0.035 (4)0.007 (3)0.001 (3)0.005 (3)
C20.039 (4)0.031 (3)0.045 (4)0.010 (3)0.009 (3)0.001 (3)
C30.040 (4)0.039 (4)0.048 (4)0.017 (3)0.017 (3)0.014 (3)
C40.036 (3)0.044 (4)0.027 (3)0.020 (3)0.005 (3)0.000 (3)
C50.055 (4)0.062 (5)0.024 (3)0.034 (4)0.004 (3)0.001 (3)
C60.051 (4)0.063 (5)0.032 (4)0.029 (4)0.009 (3)0.010 (3)
C70.034 (3)0.058 (4)0.035 (4)0.019 (3)0.005 (3)0.015 (3)
C80.038 (4)0.060 (5)0.060 (5)0.010 (3)0.013 (4)0.033 (4)
C90.042 (4)0.039 (4)0.085 (7)0.005 (3)0.011 (4)0.026 (4)
C100.046 (4)0.036 (4)0.053 (5)0.001 (3)0.003 (4)0.014 (3)
C110.026 (3)0.040 (3)0.031 (3)0.008 (3)0.001 (3)0.011 (3)
C120.029 (3)0.031 (3)0.024 (3)0.010 (2)0.005 (2)0.004 (2)
Pt20.02315 (16)0.04333 (18)0.02481 (16)0.00705 (10)0.00409 (10)0.01164 (11)
Cl50.0534 (11)0.0889 (15)0.0243 (8)0.0158 (10)0.0042 (8)0.0096 (9)
Cl60.0596 (12)0.0453 (10)0.0580 (12)0.0041 (8)0.0057 (10)0.0247 (9)
Cl70.0250 (8)0.0594 (11)0.0528 (11)0.0107 (7)0.0002 (7)0.0201 (9)
Cl80.0228 (8)0.0838 (14)0.0487 (11)0.0072 (8)0.0031 (7)0.0119 (10)
N30.031 (3)0.039 (3)0.028 (3)0.011 (2)0.005 (2)0.006 (2)
N40.027 (3)0.038 (3)0.033 (3)0.013 (2)0.001 (2)0.007 (2)
C130.068 (5)0.044 (4)0.046 (5)0.014 (4)0.003 (4)0.001 (4)
C140.089 (7)0.075 (6)0.042 (5)0.024 (5)0.004 (5)0.018 (5)
C150.080 (6)0.075 (6)0.025 (4)0.010 (5)0.002 (4)0.002 (4)
C160.048 (4)0.053 (4)0.033 (4)0.004 (3)0.002 (3)0.013 (3)
C170.073 (6)0.076 (6)0.036 (4)0.007 (5)0.002 (4)0.024 (4)
C180.078 (6)0.061 (6)0.064 (6)0.008 (5)0.016 (5)0.038 (5)
C190.046 (4)0.042 (4)0.059 (5)0.005 (3)0.008 (4)0.016 (4)
C200.059 (5)0.038 (4)0.084 (7)0.006 (4)0.018 (5)0.012 (4)
C210.063 (6)0.047 (5)0.086 (7)0.016 (4)0.024 (5)0.015 (5)
C220.040 (4)0.056 (5)0.052 (5)0.018 (3)0.007 (4)0.015 (4)
C230.027 (3)0.039 (4)0.035 (4)0.005 (3)0.000 (3)0.013 (3)
C240.029 (3)0.043 (4)0.029 (3)0.004 (3)0.002 (3)0.012 (3)
N50.179 (15)0.133 (12)0.121 (12)0.031 (10)0.022 (11)0.030 (10)
C250.127 (10)0.069 (7)0.081 (8)0.015 (7)0.027 (8)0.008 (6)
C260.131 (12)0.073 (8)0.075 (8)0.017 (7)0.010 (8)0.020 (7)
Geometric parameters (Å, º) top
Pt1—N12.041 (5)Pt2—Cl52.301 (2)
Pt1—N22.044 (5)Pt2—Cl72.302 (2)
Pt1—Cl12.294 (2)Pt2—Cl82.309 (2)
Pt1—Cl22.297 (2)N3—C131.332 (10)
Pt1—Cl42.312 (2)N3—C241.358 (8)
Pt1—Cl32.322 (2)N4—C221.348 (9)
N1—C11.327 (8)N4—C231.353 (8)
N1—C121.374 (8)C13—C141.421 (12)
N2—C101.313 (9)C13—H130.9300
N2—C111.369 (9)C14—C151.351 (14)
C1—C21.390 (10)C14—H140.9300
C1—H10.9300C15—C161.365 (12)
C2—C31.365 (11)C15—H150.9300
C2—H20.9300C16—C241.410 (10)
C3—C41.420 (10)C16—C171.448 (12)
C3—H30.9300C17—C181.315 (14)
C4—C121.411 (9)C17—H170.9300
C4—C51.425 (10)C18—C191.451 (13)
C5—C61.339 (11)C18—H180.9300
C5—H50.9300C19—C201.404 (13)
C6—C71.427 (11)C19—C231.408 (10)
C6—H60.9300C20—C211.336 (14)
C7—C111.393 (9)C20—H200.9300
C7—C81.420 (11)C21—C221.400 (12)
C8—C91.364 (13)C21—H210.9300
C8—H80.9300C22—H220.9300
C9—C101.378 (12)C23—C241.400 (10)
C9—H90.9300N5—C261.077 (17)
C10—H100.9300C25—C261.425 (18)
C11—C121.407 (9)C25—H26A0.9600
Pt2—N32.030 (5)C25—H26B0.9600
Pt2—N42.032 (5)C25—H26C0.9600
Pt2—Cl62.298 (2)
N1—Pt1—N282.0 (2)N4—Pt2—Cl595.07 (17)
N1—Pt1—Cl1174.98 (15)Cl6—Pt2—Cl590.10 (8)
N2—Pt1—Cl192.96 (16)N3—Pt2—Cl787.56 (15)
N1—Pt1—Cl292.78 (15)N4—Pt2—Cl789.02 (15)
N2—Pt1—Cl2174.77 (15)Cl6—Pt2—Cl791.93 (7)
Cl1—Pt1—Cl292.23 (8)Cl5—Pt2—Cl790.84 (7)
N1—Pt1—Cl488.58 (15)N3—Pt2—Cl889.53 (15)
N2—Pt1—Cl488.78 (17)N4—Pt2—Cl887.37 (15)
Cl1—Pt1—Cl491.60 (9)Cl6—Pt2—Cl891.46 (8)
Cl2—Pt1—Cl490.38 (10)Cl5—Pt2—Cl891.84 (7)
N1—Pt1—Cl390.10 (15)Cl7—Pt2—Cl8175.68 (7)
N2—Pt1—Cl389.02 (17)C13—N3—C24120.0 (6)
Cl1—Pt1—Cl389.54 (8)C13—N3—Pt2127.6 (5)
Cl2—Pt1—Cl391.72 (9)C24—N3—Pt2112.3 (4)
Cl4—Pt1—Cl3177.57 (8)C22—N4—C23120.1 (6)
C1—N1—C12120.0 (5)C22—N4—Pt2127.4 (5)
C1—N1—Pt1128.9 (4)C23—N4—Pt2112.4 (4)
C12—N1—Pt1111.2 (4)N3—C13—C14119.6 (8)
C10—N2—C11118.9 (6)N3—C13—H13120.2
C10—N2—Pt1129.9 (5)C14—C13—H13120.2
C11—N2—Pt1111.1 (4)C15—C14—C13119.7 (9)
N1—C1—C2121.3 (6)C15—C14—H14120.2
N1—C1—H1119.4C13—C14—H14120.2
C2—C1—H1119.4C14—C15—C16121.8 (8)
C3—C2—C1121.1 (7)C14—C15—H15119.1
C3—C2—H2119.5C16—C15—H15119.1
C1—C2—H2119.5C15—C16—C24116.8 (7)
C2—C3—C4118.7 (6)C15—C16—C17126.4 (8)
C2—C3—H3120.6C24—C16—C17116.8 (7)
C4—C3—H3120.6C18—C17—C16122.4 (8)
C12—C4—C3117.9 (6)C18—C17—H17118.8
C12—C4—C5117.0 (6)C16—C17—H17118.8
C3—C4—C5125.1 (7)C17—C18—C19121.8 (8)
C6—C5—C4122.1 (7)C17—C18—H18119.1
C6—C5—H5119.0C19—C18—H18119.1
C4—C5—H5119.0C20—C19—C23117.4 (8)
C5—C6—C7120.8 (7)C20—C19—C18125.9 (8)
C5—C6—H6119.6C23—C19—C18116.7 (8)
C7—C6—H6119.6C21—C20—C19120.1 (8)
C11—C7—C8116.4 (7)C21—C20—H20120.0
C11—C7—C6119.1 (7)C19—C20—H20120.0
C8—C7—C6124.5 (7)C20—C21—C22121.1 (8)
C9—C8—C7119.7 (7)C20—C21—H21119.5
C9—C8—H8120.2C22—C21—H21119.5
C7—C8—H8120.2N4—C22—C21119.9 (8)
C8—C9—C10119.9 (7)N4—C22—H22120.1
C8—C9—H9120.0C21—C22—H22120.1
C10—C9—H9120.0N4—C23—C24117.1 (6)
N2—C10—C9122.4 (8)N4—C23—C19121.4 (7)
N2—C10—H10118.8C24—C23—C19121.4 (7)
C9—C10—H10118.8N3—C24—C23117.1 (6)
N2—C11—C7122.6 (6)N3—C24—C16122.1 (7)
N2—C11—C12117.9 (6)C23—C24—C16120.8 (6)
C7—C11—C12119.5 (6)C26—C25—H26A109.5
N1—C12—C11117.4 (5)C26—C25—H26B109.5
N1—C12—C4121.1 (6)H26A—C25—H26B109.5
C11—C12—C4121.4 (6)C26—C25—H26C109.5
N3—Pt2—N480.9 (2)H26A—C25—H26C109.5
N3—Pt2—Cl693.96 (16)H26B—C25—H26C109.5
N4—Pt2—Cl6174.73 (16)N5—C26—C25178.9 (18)
N3—Pt2—Cl5175.68 (16)
N2—Pt1—N1—C1175.1 (6)N4—Pt2—N3—C13177.0 (6)
Cl2—Pt1—N1—C14.2 (5)Cl6—Pt2—N3—C131.8 (6)
Cl4—Pt1—N1—C186.1 (5)Cl7—Pt2—N3—C1393.6 (6)
Cl3—Pt1—N1—C195.9 (5)Cl8—Pt2—N3—C1389.6 (6)
N2—Pt1—N1—C125.8 (4)N4—Pt2—N3—C243.5 (4)
Cl2—Pt1—N1—C12174.9 (4)Cl6—Pt2—N3—C24177.7 (4)
Cl4—Pt1—N1—C1294.8 (4)Cl7—Pt2—N3—C2485.9 (4)
Cl3—Pt1—N1—C1283.1 (4)Cl8—Pt2—N3—C2490.9 (4)
N1—Pt1—N2—C10172.5 (6)N3—Pt2—N4—C22173.2 (6)
Cl1—Pt1—N2—C107.8 (6)Cl5—Pt2—N4—C228.3 (5)
Cl4—Pt1—N2—C1083.8 (6)Cl7—Pt2—N4—C2299.1 (5)
Cl3—Pt1—N2—C1097.3 (6)Cl8—Pt2—N4—C2283.3 (5)
N1—Pt1—N2—C114.8 (4)N3—Pt2—N4—C232.8 (4)
Cl1—Pt1—N2—C11174.9 (4)Cl5—Pt2—N4—C23175.7 (4)
Cl4—Pt1—N2—C1193.5 (4)Cl7—Pt2—N4—C2384.9 (4)
Cl3—Pt1—N2—C1185.5 (4)Cl8—Pt2—N4—C2392.7 (4)
C12—N1—C1—C20.8 (9)C24—N3—C13—C141.8 (12)
Pt1—N1—C1—C2178.1 (5)Pt2—N3—C13—C14177.7 (6)
N1—C1—C2—C30.2 (10)N3—C13—C14—C150.5 (15)
C1—C2—C3—C40.7 (10)C13—C14—C15—C161.1 (16)
C2—C3—C4—C120.3 (9)C14—C15—C16—C241.3 (14)
C2—C3—C4—C5177.1 (6)C14—C15—C16—C17176.5 (10)
C12—C4—C5—C62.7 (10)C15—C16—C17—C18177.8 (10)
C3—C4—C5—C6174.7 (7)C24—C16—C17—C180.0 (13)
C4—C5—C6—C70.5 (11)C16—C17—C18—C191.4 (15)
C5—C6—C7—C112.2 (10)C17—C18—C19—C20176.7 (9)
C5—C6—C7—C8176.9 (7)C17—C18—C19—C233.0 (13)
C11—C7—C8—C91.0 (11)C23—C19—C20—C211.5 (12)
C6—C7—C8—C9178.1 (7)C18—C19—C20—C21178.2 (9)
C7—C8—C9—C101.2 (12)C19—C20—C21—C222.4 (14)
C11—N2—C10—C93.1 (11)C23—N4—C22—C212.3 (10)
Pt1—N2—C10—C9179.8 (6)Pt2—N4—C22—C21178.0 (5)
C8—C9—C10—N20.9 (12)C20—C21—C22—N40.5 (12)
C10—N2—C11—C73.3 (10)C22—N4—C23—C24174.7 (6)
Pt1—N2—C11—C7179.1 (5)Pt2—N4—C23—C241.6 (7)
C10—N2—C11—C12174.6 (6)C22—N4—C23—C193.1 (9)
Pt1—N2—C11—C123.0 (7)Pt2—N4—C23—C19179.4 (5)
C8—C7—C11—N21.2 (10)C20—C19—C23—N41.2 (10)
C6—C7—C11—N2179.6 (6)C18—C19—C23—N4179.1 (7)
C8—C7—C11—C12176.7 (6)C20—C19—C23—C24176.5 (7)
C6—C7—C11—C122.5 (9)C18—C19—C23—C243.2 (11)
C1—N1—C12—C11174.8 (6)C13—N3—C24—C23176.7 (6)
Pt1—N1—C12—C116.1 (7)Pt2—N3—C24—C233.8 (7)
C1—N1—C12—C41.3 (9)C13—N3—C24—C161.5 (10)
Pt1—N1—C12—C4177.9 (4)Pt2—N3—C24—C16178.0 (5)
N2—C11—C12—N12.1 (8)N4—C23—C24—N31.5 (9)
C7—C11—C12—N1175.9 (6)C19—C23—C24—N3176.3 (6)
N2—C11—C12—C4178.2 (6)N4—C23—C24—C16179.7 (6)
C7—C11—C12—C40.2 (9)C19—C23—C24—C161.9 (10)
C3—C4—C12—N10.7 (9)C15—C16—C24—N30.0 (11)
C5—C4—C12—N1178.3 (5)C17—C16—C24—N3178.0 (7)
C3—C4—C12—C11175.2 (6)C15—C16—C24—C23178.2 (7)
C5—C4—C12—C112.4 (9)C17—C16—C24—C230.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.243 (7)120
C1—H1···Cl60.932.753.632 (7)158
C6—H6···Cl8i0.932.743.637 (8)163
C10—H10···Cl10.932.723.275 (9)120
C13—H13···Cl60.932.683.248 (9)120
C15—H15···Cl1ii0.932.793.669 (9)159
C21—H21···Cl2iii0.932.723.451 (9)136
C22—H22···Cl50.932.743.297 (9)120
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[PtCl4(C12H8N2)]·0.5C2H3N
Mr1075.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.671 (5), 12.619 (8), 16.63 (1)
α, β, γ (°)89.70 (1), 87.46 (1), 78.797 (7)
V3)1577 (2)
Z2
Radiation typeMo Kα
µ (mm1)9.56
Crystal size (mm)0.55 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.035, 0.057
No. of measured, independent and
observed [I > 2σ(I)] reflections
8700, 5856, 5250
Rint0.027
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.09
No. of reflections5856
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.97, 2.05

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.243 (7)120.0
C1—H1···Cl60.932.753.632 (7)157.7
C6—H6···Cl8i0.932.743.637 (8)163.2
C10—H10···Cl10.932.723.275 (9)119.5
C13—H13···Cl60.932.683.248 (9)120.0
C15—H15···Cl1ii0.932.793.669 (9)158.6
C21—H21···Cl2iii0.932.723.451 (9)135.9
C22—H22···Cl50.932.743.297 (9)119.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007-412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072–1076.  CSD CrossRef CAS Web of Science Google Scholar
First citationFanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173–3182.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds