metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(3-nitro­benzoato)(μ3-1,2,4-triazolato)cobalt(II)]

aLiaocheng Vocational and Technical College, LiaoCheng 252000, ShanDong, People's Republic of China
*Correspondence e-mail: q200801@sina.com

(Received 30 November 2008; accepted 22 December 2008; online 8 January 2009)

In the title compound, [Co(C2H2N3)(C7H4NO4)]n, the CoII atom is five-coordinated by three triazolate ligands and one bidentate 3-nitro­benzoate anion in a distorted trigonal-bipyramidal geometry. The triazolate ligand bridges the CoII atoms, generating a two-dimensional net parallel to the ab plane, in which both the CoII atom and the triazolate ligand act as three-connected nodes. Two weak inter­molecular C—H⋯O hydrogen bonds connect the nets.

Related literature

For metal–triazole complexes, see: Park et al. (2006[Park, H., Moureau, D. M. & Parise, J. B. (2006). Chem. Mater. 18, 525-531.]); Yang et al. (2008[Yang, E.-C., Liu, Z.-Y., Wang, X.-G., Batten, S. R. & Zhao, X.-J. (2008). CrystEngComm, 10, 1140-1143.]); Zhai et al. (2007[Zhai, Q.-G., Lu, C.-Z., Wu, X.-Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332-2342.]). For Co—O and Co—N bond lengths, see: Zhang et al. (2008[Zhang, J., Chew, E., Chen, S.-M., Pham, J. T. H. & Bu, X.-H. (2008). Inorg. Chem. 47, 3495-3497.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H2N3)(C7H4NO4)]

  • Mr = 293.11

  • Orthorhombic, P b c a

  • a = 9.2419 (18) Å

  • b = 10.377 (2) Å

  • c = 22.597 (5) Å

  • V = 2167.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 296 (2) K

  • 0.14 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.802, Tmax = 0.826

  • 19233 measured reflections

  • 2477 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.04

  • 2477 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.3314 (12)
Co1—O2 2.0008 (12)
Co1—N1 2.0232 (12)
Co1—N2i 2.0118 (12)
Co1—N3ii 2.0385 (12)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2iii 0.93 2.54 3.250 (3) 134
C8—H8⋯O4iv 0.93 2.46 3.372 (2) 169
Symmetry codes: (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, more and more attention is paid on the coordination chemistry about trz ligand or analogy ligand (Park et al., 2006; Yang et al., 2008; Zhai et al., 2007), driven by their intriguing topological matrix and potential applications.

The asymmetric unit of I is shown in Fig. 1. The CoII atom is five-coordinated by two L (3-nitrobenzoate anion) O atoms, three trz N atoms to give rise to a distorted trigonal-bipyramidal geometry. The Co—O/N bond lengths of 2.0008 (12)–2.3314 (12)Å (Table 1) are in the normal range (Zhang et al., 2008). The trz and L ligand adopt bridging and bidentate coordinated modes, respectively. As shown in Fig. 2a, the CoII atoms are combined together by trz ligands to generate a two-dimensional net parallel to the ab plane with the L ligands ligated on the two-dimensional net up and down. From a topological point of view, if considering the trz ligands and cobalt ions as three-connected nodes. Moreover, besides the presence of two weak intermolecular C—H···O hydrogen bonds, see Table 2, there is not other obvious supramolecular interactions between two-dimensional nets,

Related literature top

For metal–triazole complexes, see: Park et al. (2006); Yang et al. (2008); Zhai et al. (2007). For Co—O and Co—N bond lengths, see: Zhang et al. (2008).

Experimental top

CoCl2 (1.0 mmol), 3-nitrobenzoic acid (1 mmol) and triazole (1 mmol) were dissolved in water (10 ml). The solution was heated in a 25 ml Teflonlined reaction vessel at 433 K for ca 3 days and then cooled to room temperature. Purple crystals of the title compound were obtained in a yield of 78%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit with 50% thermal ellipsoids for non-H atoms [symmetry codes: (A) -x + 1/2, y - 1/2, z; (B) x + 1/2, -y + 3/2, -z + 1].
[Figure 2] Fig. 2. a) View of the two-dimensional net onto the ab plane, formed by cobalt ions and trz ligands; b) View of the two-dimensional net built on three-connected trz and cobalt nodes.
Poly[(3-nitrobenzoato)(µ3-1,2,4-triazolato)cobalt(II)] top
Crystal data top
[Co(C2H2N3)(C7H4NO4)]F(000) = 1176
Mr = 293.11Dx = 1.797 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15896 reflections
a = 9.2419 (18) Åθ = 3.1–27.5°
b = 10.377 (2) ŵ = 1.60 mm1
c = 22.597 (5) ÅT = 296 K
V = 2167.1 (8) Å3Block, purple
Z = 80.14 × 0.12 × 0.12 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2477 independent reflections
Radiation source: sealed tube2245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1312
Tmin = 0.802, Tmax = 0.826l = 2929
19233 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.1998P]
where P = (Fo2 + 2Fc2)/3
2477 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C2H2N3)(C7H4NO4)]V = 2167.1 (8) Å3
Mr = 293.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.2419 (18) ŵ = 1.60 mm1
b = 10.377 (2) ÅT = 296 K
c = 22.597 (5) Å0.14 × 0.12 × 0.12 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2245 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.826Rint = 0.029
19233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2477 reflectionsΔρmin = 0.28 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0918 (2)0.62096 (17)0.17212 (8)0.0358 (4)
C20.0058 (2)0.7078 (2)0.14920 (8)0.0470 (5)
H20.01980.71410.10850.056*
C30.0823 (3)0.7853 (2)0.18746 (9)0.0522 (6)
H30.14730.84570.17280.063*
C40.0620 (2)0.77306 (18)0.24798 (8)0.0406 (4)
H40.11570.82400.27380.049*
C50.1165 (2)0.60861 (16)0.23241 (7)0.0322 (4)
H50.18430.55030.24680.039*
C60.03721 (19)0.68583 (16)0.27043 (7)0.0295 (3)
C70.05354 (18)0.67429 (16)0.33614 (7)0.0290 (3)
C80.32376 (16)0.75394 (14)0.51070 (7)0.0253 (3)
H80.34250.68260.53440.030*
C90.22994 (17)0.87843 (13)0.44808 (6)0.0231 (3)
H90.16930.91180.41900.028*
Co10.08538 (2)0.615646 (17)0.442261 (8)0.01829 (7)
N10.21652 (13)0.75890 (11)0.47077 (5)0.0227 (2)
N20.39953 (13)0.86141 (12)0.51260 (5)0.0225 (3)
N30.33828 (13)0.94272 (11)0.47154 (5)0.0209 (2)
N40.1706 (2)0.53740 (17)0.13114 (7)0.0459 (4)
O10.00457 (13)0.75383 (12)0.36970 (5)0.0367 (3)
O20.12664 (15)0.58069 (12)0.35684 (5)0.0351 (3)
O30.2746 (2)0.47839 (18)0.14938 (7)0.0683 (5)
O40.1257 (2)0.53020 (16)0.08006 (6)0.0627 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (11)0.0329 (9)0.0228 (8)0.0083 (7)0.0032 (7)0.0016 (6)
C20.0745 (14)0.0453 (11)0.0211 (8)0.0027 (10)0.0091 (8)0.0050 (8)
C30.0778 (16)0.0444 (12)0.0345 (10)0.0148 (10)0.0150 (9)0.0058 (9)
C40.0592 (11)0.0331 (9)0.0295 (9)0.0079 (8)0.0040 (8)0.0000 (7)
C50.0422 (9)0.0299 (8)0.0246 (8)0.0020 (7)0.0011 (7)0.0013 (6)
C60.0418 (9)0.0261 (8)0.0208 (7)0.0037 (7)0.0026 (6)0.0022 (6)
C70.0371 (8)0.0284 (8)0.0214 (7)0.0058 (6)0.0020 (6)0.0014 (6)
C80.0290 (7)0.0196 (7)0.0274 (7)0.0033 (6)0.0042 (6)0.0061 (6)
C90.0269 (7)0.0190 (7)0.0234 (7)0.0015 (5)0.0031 (5)0.0034 (5)
Co10.02203 (12)0.01445 (11)0.01838 (11)0.00039 (6)0.00086 (7)0.00145 (7)
N10.0263 (6)0.0181 (6)0.0238 (6)0.0032 (5)0.0026 (5)0.0025 (5)
N20.0247 (6)0.0185 (6)0.0243 (6)0.0015 (5)0.0038 (5)0.0050 (5)
N30.0246 (6)0.0163 (6)0.0217 (6)0.0005 (4)0.0008 (4)0.0039 (5)
N40.0611 (11)0.0437 (9)0.0330 (8)0.0104 (8)0.0139 (7)0.0058 (7)
O10.0453 (7)0.0413 (7)0.0234 (6)0.0066 (6)0.0001 (5)0.0033 (5)
O20.0541 (7)0.0304 (6)0.0207 (5)0.0052 (6)0.0027 (5)0.0020 (5)
O30.0667 (11)0.0791 (12)0.0590 (10)0.0140 (10)0.0135 (8)0.0168 (9)
O40.1046 (13)0.0585 (10)0.0249 (7)0.0100 (9)0.0117 (8)0.0095 (7)
Geometric parameters (Å, º) top
C1—C21.376 (3)C8—N21.3175 (19)
C1—C51.388 (2)C8—N11.3414 (19)
C1—N41.463 (2)C8—H80.9300
C2—C31.376 (3)C9—N31.3149 (19)
C2—H20.9300C9—N11.3478 (18)
C3—C41.386 (3)C9—H90.9300
C3—H30.9300Co1—O12.3314 (12)
C4—C61.385 (2)Co1—O22.0008 (12)
C4—H40.9300Co1—N12.0232 (12)
C5—C61.385 (2)Co1—N2i2.0118 (12)
C5—H50.9300Co1—N3ii2.0385 (12)
C6—C71.497 (2)N2—N31.3759 (16)
C7—O11.243 (2)N4—O31.212 (2)
C7—O21.272 (2)N4—O41.229 (2)
C2—C1—C5122.56 (17)N1—C9—H9123.7
C2—C1—N4118.45 (17)O2—Co1—N2i132.33 (5)
C5—C1—N4118.98 (17)O2—Co1—N1109.04 (5)
C1—C2—C3118.87 (17)N2i—Co1—N1105.25 (5)
C1—C2—H2120.6O2—Co1—N3ii95.03 (5)
C3—C2—H2120.6N2i—Co1—N3ii103.60 (5)
C2—C3—C4119.79 (19)N1—Co1—N3ii109.64 (5)
C2—C3—H3120.1O2—Co1—O160.06 (5)
C4—C3—H3120.1N2i—Co1—O188.82 (5)
C6—C4—C3120.72 (18)N1—Co1—O189.18 (5)
C6—C4—H4119.6N3ii—Co1—O1153.26 (5)
C3—C4—H4119.6C8—N1—C9102.90 (12)
C6—C5—C1117.93 (16)C8—N1—Co1128.95 (10)
C6—C5—H5121.0C9—N1—Co1127.60 (10)
C1—C5—H5121.0C8—N2—N3106.17 (12)
C4—C6—C5120.10 (15)C8—N2—Co1iii124.78 (10)
C4—C6—C7118.83 (15)N3—N2—Co1iii128.36 (9)
C5—C6—C7121.04 (15)C9—N3—N2105.91 (11)
O1—C7—O2120.80 (14)C9—N3—Co1iv125.40 (10)
O1—C7—C6120.56 (15)N2—N3—Co1iv128.05 (9)
O2—C7—C6118.63 (15)O3—N4—O4123.81 (19)
N2—C8—N1112.47 (13)O3—N4—C1118.64 (17)
N2—C8—H8123.8O4—N4—C1117.55 (19)
N1—C8—H8123.8C7—O1—Co182.34 (10)
N3—C9—N1112.56 (13)C7—O2—Co196.61 (10)
N3—C9—H9123.7
C5—C1—C2—C30.2 (3)C7—Co1—N1—C925.56 (14)
N4—C1—C2—C3178.90 (19)N1—C8—N2—N30.24 (17)
C1—C2—C3—C41.2 (3)N1—C8—N2—Co1iii170.88 (10)
C2—C3—C4—C61.7 (3)N1—C9—N3—N20.56 (17)
C2—C1—C5—C61.2 (3)N1—C9—N3—Co1iv170.84 (10)
N4—C1—C5—C6177.94 (16)C8—N2—N3—C90.19 (16)
C3—C4—C6—C50.7 (3)Co1iii—N2—N3—C9170.89 (10)
C3—C4—C6—C7178.94 (19)C8—N2—N3—Co1iv170.91 (10)
C1—C5—C6—C40.7 (3)Co1iii—N2—N3—Co1iv0.21 (18)
C1—C5—C6—C7177.51 (16)C2—C1—N4—O3166.47 (19)
C4—C6—C7—O110.4 (2)C5—C1—N4—O314.4 (3)
C5—C6—C7—O1171.35 (16)C2—C1—N4—O414.4 (3)
C4—C6—C7—O2168.80 (16)C5—C1—N4—O4164.78 (17)
C5—C6—C7—O29.4 (2)O2—C7—O1—Co14.03 (15)
N2—C8—N1—C90.55 (17)C6—C7—O1—Co1175.16 (15)
N2—C8—N1—Co1171.29 (10)O2—Co1—O1—C72.54 (10)
N3—C9—N1—C80.68 (17)N2i—Co1—O1—C7139.56 (10)
N3—C9—N1—Co1171.31 (10)N1—Co1—O1—C7115.17 (10)
O2—Co1—N1—C8113.76 (13)N3ii—Co1—O1—C720.77 (16)
N2i—Co1—N1—C899.90 (13)O1—C7—O2—Co14.68 (18)
N3ii—Co1—N1—C810.96 (14)C6—C7—O2—Co1174.52 (13)
O1—Co1—N1—C8171.55 (13)N2i—Co1—O2—C753.70 (13)
O2—Co1—N1—C956.19 (14)N1—Co1—O2—C779.98 (11)
N2i—Co1—N1—C990.15 (13)N3ii—Co1—O2—C7167.23 (10)
N3ii—Co1—N1—C9158.99 (12)O1—Co1—O2—C72.47 (9)
O1—Co1—N1—C91.60 (13)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2v0.932.543.250 (3)134
C8—H8···O4vi0.932.463.372 (2)169
Symmetry codes: (v) x, y+1/2, z+1/2; (vi) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H2N3)(C7H4NO4)]
Mr293.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.2419 (18), 10.377 (2), 22.597 (5)
V3)2167.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.14 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.802, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
19233, 2477, 2245
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.04
No. of reflections2477
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.3314 (12)Co1—N2i2.0118 (12)
Co1—O22.0008 (12)Co1—N3ii2.0385 (12)
Co1—N12.0232 (12)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2iii0.932.543.250 (3)134
C8—H8···O4iv0.932.463.372 (2)169
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1, z+1/2.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPark, H., Moureau, D. M. & Parise, J. B. (2006). Chem. Mater. 18, 525–531.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, E.-C., Liu, Z.-Y., Wang, X.-G., Batten, S. R. & Zhao, X.-J. (2008). CrystEngComm, 10, 1140–1143.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhai, Q.-G., Lu, C.-Z., Wu, X.-Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332–2342.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Chew, E., Chen, S.-M., Pham, J. T. H. & Bu, X.-H. (2008). Inorg. Chem. 47, 3495–3497.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds