organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Pyridine-2,6-diyldi­methyl­ene)bis­­(di­phenyl­methanol)

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: llyyjz@nju.edu.cn

(Received 15 December 2008; accepted 22 December 2008; online 8 January 2009)

In the title compound, C33H29NO2, the central pyridyl ring makes dihedral angles of 42.71 (16), 44.78 (16), 85.47 (12) and 76.74 (12)° with the four phenyl rings. There are two intra­molecular O—H⋯N hydrogen bonds. In the crystal structure, mol­ecules are linked into a chain running along the b axis by a weak C—H⋯π inter­action.

Related literature

For organometallic pincer complexes, see: Dupont et al. (2005[Dupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527-2571.]); Gauvin et al. (2001[Gauvin, R. M., Rozenberg, H., Shimon, L. J. W. & Milstein, D. (2001). Organometallics, 20, 1719-1724.]); Haenel et al. (2001[Haenel, M. W., Oevers, S., Angermund, K., Kaska, W. C., Fan, H.-J. & Hall, M. B. (2001). Angew. Chem. Int. Ed. 40, 3596-3600.]); van der Boom & Milstein (2003[Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]); van der Boom et al. (1997[Boom, M. E. van der, Liou, S.-Y., Ben-David, Y., Vigalok, A. & Milstein, D. (1997). Angew. Chem. Int. Ed. Engl. 36, 625-626.]); Vigalok & Milstein (2001[Vigalok, A. & Milstein, D. (2001). Acc. Chem. Res. 34, 798-807.]); Bergbreiter et al. (1999[Bergbreiter, D. E., Osburn, P. L. & Liu, Y.-S. (1999). J. Am. Chem. Soc. 121, 9531-9538.]). The title compound was prepared according to the procedure described by Berg & Holm (1985[Berg, J. M. & Holm, R. H. (1985). J. Am. Chem. Soc. 107, 917-925.]).

[Scheme 1]

Experimental

Crystal data
  • C33H29NO2

  • Mr = 471.57

  • Monoclinic, C c

  • a = 18.492 (3) Å

  • b = 10.1039 (17) Å

  • c = 16.097 (3) Å

  • β = 121.234 (2)°

  • V = 2571.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.982

  • 10905 measured reflections

  • 2960 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.127

  • S = 1.04

  • 2960 reflections

  • 331 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (5) 2.34 (5) 3.013 (4) 139 (4)
O2—H2A⋯N1 0.82 (5) 2.20 (5) 2.854 (4) 136 (4)
C31—H31⋯Cg1i 0.93 3.08 3.973 (3) 162
Symmetry code: (i) x, y-1, z. Cg1 is the centroid of the C8–C13 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, organometallic pincer complexes attract much attention because of their widespread applications in catalysis and material sciences (Dupont et al., 2005; van der Boom & Milstein, 2003). Major recent findings have been the generation of efficient dehydrogenation (Haenel et al., 2001) and Heck type catalysts (Bergbreiter et al., 1999), activation of strong C—O (van der Boom et al., 1997) and C—C bonds (Gauvin et al., 2001), and trapping of various intermediates and unusual molecules (Vigalok & Milstein, 2001). 2,6-Bis(2-hydroxy-2,2-diphenylethyl)pyridine, (I), could coordinate with transition metals to form pincer complexes. In our studies, we have got its single crystals and herein reported its crystal structure.

The crystal structure of title compound, C33H29NO2, reveals that all the bond lengths and angles have normal values. Each asymmetric unit in (I) contains four phenyl rings A (C8—C13), B (C14—C19), C (C22—C27) D (C28—C33) and a pyridyl ring E (N1/C1—C5). The rings A, B, C, D and E are all not coplanar, their dihedral angles between rings A and B, B and E, E and C, C and D being 68.13 (15), 44.79 (16), 85.48 (11) and 86.85 (14)°, respectively. The dihedral angles between rings A and E, B and E, C and E, D and E are 42.71 (16), 44.78 (16), 85.47 (12) and 76.74 (12)°, respectively. In the molecule there are two intramolecular O—H···N hydrogen bonds (Table 1 and Fig. 1). In the crystal, there is a weak C—H···π interaction (C31—H31···Cg1i, i: x, -1 + y, z; Cg1 is the centroid of ring A) between the neighbouring molecules (Table 1). Through the weak C—H···π interactions, the one-dimensional chains are formed along the b axis (Fig. 2).

Related literature top

For organometallic pincer complexes, see: Dupont et al. (2005); Gauvin et al. (2001); Haenel et al. (2001); van der Boom & Milstein (2003); van der Boom et al. (1997); Vigalok & Milstein (2001); Bergbreiter et al. (1999). The title compound was prepared according to the procedure described by Berg & Holm (1985). Cg1 is the centroid of the C8–C13 ring.

Experimental top

2,6-Bis(2-hydroxy-2,2-diphenylethyl)pyridine was prepared by 2,6-lutidine and benzophenone (yield 30%) according to a procedure described in the literature (Berg & Holm, 1985). Colorless crystals were obtained by recrystallized from light petroleum-ethyl acetate (v/v 5/1) at room temperature.

1H-NMR (CDCl3, 400 MHz) δ: 7.17–7.37 (21 H, m, 4Ph + 4-H), 6.69 (2 H, d, J = 7.5 Hz, 3-H + 5-H), 5.25 (2 H, s, 2OH), 3.68 (4 H, s, 2CH2).

Refinement top

H atoms bonded to O atoms were located in a difference map and their positional parameters were refined with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level. Dashed lines indicate hydrogen bonds and all H atoms except those involved in hydrogen bonding have been omitted for clarify.
[Figure 2] Fig. 2. The 1-D chain, viewed along the a axis. Dashed lines indicate the C—H···π interaction between the neighbouring molecules [symmetry code: (i) x, -1 + y, z]. H atoms not involved in the interaction have been omitted for clarify.
(Pyridine-2,6-diyldimethylene)bis(diphenylmethanol) top
Crystal data top
C33H29NO2F(000) = 1000
Mr = 471.57Dx = 1.218 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6093 reflections
a = 18.492 (3) Åθ = 2.4–27.5°
b = 10.1039 (17) ŵ = 0.08 mm1
c = 16.097 (3) ÅT = 291 K
β = 121.234 (2)°Block, colourless
V = 2571.7 (8) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2960 independent reflections
Radiation source: sealed tube2695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2421
Tmin = 0.980, Tmax = 0.982k = 1313
10905 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
2960 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
C33H29NO2V = 2571.7 (8) Å3
Mr = 471.57Z = 4
Monoclinic, CcMo Kα radiation
a = 18.492 (3) ŵ = 0.08 mm1
b = 10.1039 (17) ÅT = 291 K
c = 16.097 (3) Å0.30 × 0.26 × 0.24 mm
β = 121.234 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2695 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.982Rint = 0.040
10905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
2960 reflectionsΔρmin = 0.39 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-2.3376 (0.0303) x - 5.1684 (0.0138) y + 12.7530 (0.0167) z = 0.3615 (0.0248)

* 0.0017 (0.0025) C8 * -0.0041 (0.0026) C9 * 0.0000 (0.0028) C10 * 0.0065 (0.0029) C11 * -0.0089 (0.0030) C12 * 0.0048 (0.0028) C13

Rms deviation of fitted atoms = 0.0052

15.5569 (0.0164) x - 0.4094 (0.0178) y + 0.3974 (0.0262) z = 7.3929 (0.0188)

Angle to previous plane (with approximate e.s.d.) = 68.13 (0.15)

* -0.0126 (0.0027) C14 * 0.0109 (0.0029) C15 * -0.0002 (0.0031) C16 * -0.0092 (0.0030) C17 * 0.0076 (0.0030) C18 * 0.0035 (0.0029) C19

Rms deviation of fitted atoms = 0.0085

- 8.9504 (0.0218) x + 7.2017 (0.0078) y - 2.9469 (0.0230) z = 2.8842 (0.0118)

Angle to previous plane (with approximate e.s.d.) = 44.79 (0.16)

* 0.0048 (0.0024) N1 * 0.0001 (0.0031) C1 * 0.0004 (0.0030) C2 * -0.0045 (0.0028) C3 * 0.0087 (0.0031) C4 * -0.0091 (0.0024) C5 * -0.0002 (0.0022) C6

Rms deviation of fitted atoms = 0.0054

16.3880 (0.0176) x + 4.6610 (0.0180) y - 7.9763 (0.0254) z = 6.8874 (0.0075)

Angle to previous plane (with approximate e.s.d.) = 85.48 (0.11)

* -0.0149 (0.0028) C22 * 0.0006 (0.0031) C23 * 0.0132 (0.0033) C24 * -0.0125 (0.0034) C25 * -0.0023 (0.0036) C26 * 0.0160 (0.0032) C27

Rms deviation of fitted atoms = 0.0117

- 6.3202 (0.0322) x + 6.0939 (0.0141) y + 12.7724 (0.0177) z = 5.2974 (0.0138)

Angle to previous plane (with approximate e.s.d.) = 86.85 (0.14)

* 0.0000 (0.0028) C28 * 0.0000 (0.0032) C29 * 0.0000 (0.0033) C30 * 0.0000 (0.0031) C31 * 0.0000 (0.0031) C32 * 0.0000 (0.0029) C33

Rms deviation of fitted atoms = 0.0000

###############################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)

* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5

Rms deviation of fitted atoms = 0.0058

- 2.3376 (0.0303) x - 5.1684 (0.0138) y + 12.7530 (0.0167) z = 0.3615 (0.0248)

Angle to previous plane (with approximate e.s.d.) = 42.71 (0.16)

* 0.0017 (0.0025) C8 * -0.0041 (0.0026) C9 * 0.0000 (0.0028) C10 * 0.0065 (0.0029) C11 * -0.0089 (0.0030) C12 * 0.0048 (0.0028) C13

Rms deviation of fitted atoms = 0.0052

- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)

Angle to previous plane (with approximate e.s.d.) = 42.71 (0.16)

* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5

Rms deviation of fitted atoms = 0.0058

15.5569 (0.0164) x - 0.4094 (0.0178) y + 0.3974 (0.0262) z = 7.3929 (0.0188)

Angle to previous plane (with approximate e.s.d.) = 44.78 (0.16)

* -0.0126 (0.0027) C14 * 0.0109 (0.0029) C15 * -0.0002 (0.0031) C16 * -0.0092 (0.0030) C17 * 0.0076 (0.0030) C18 * 0.0035 (0.0029) C19

Rms deviation of fitted atoms = 0.0085

- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)

Angle to previous plane (with approximate e.s.d.) = 44.78 (0.16)

* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5

Rms deviation of fitted atoms = 0.0058

16.3880 (0.0176) x + 4.6610 (0.0180) y - 7.9763 (0.0254) z = 6.8874 (0.0075)

Angle to previous plane (with approximate e.s.d.) = 85.47 (0.12)

* -0.0149 (0.0028) C22 * 0.0006 (0.0031) C23 * 0.0132 (0.0033) C24 * -0.0125 (0.0034) C25 * -0.0023 (0.0036) C26 * 0.0160 (0.0032) C27

Rms deviation of fitted atoms = 0.0117

- 8.9516 (0.0242) x + 7.2008 (0.0111) y - 2.9471 (0.0232) z = 2.8832 (0.0159)

Angle to previous plane (with approximate e.s.d.) = 85.47 (0.12)

* 0.0046 (0.0022) N1 * -0.0001 (0.0025) C1 * 0.0003 (0.0027) C2 * -0.0045 (0.0028) C3 * 0.0088 (0.0028) C4 * -0.0091 (0.0025) C5

Rms deviation of fitted atoms = 0.0058

- 6.3202 (0.0322) x + 6.0939 (0.0141) y + 12.7724 (0.0177) z = 5.2974 (0.0138)

Angle to previous plane (with approximate e.s.d.) = 76.74 (0.12)

* 0.0000 (0.0028) C28 * 0.0000 (0.0032) C29 * 0.0000 (0.0033) C30 * 0.0000 (0.0031) C31 * 0.0000 (0.0031) C32 * 0.0000 (0.0029) C33

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3187 (2)0.9740 (4)0.4335 (3)0.0489 (8)
C20.2728 (3)0.9343 (4)0.4758 (3)0.0537 (9)
H20.28370.97210.53390.064*
C30.2110 (3)0.8385 (4)0.4312 (3)0.0548 (10)
H30.18040.81020.45890.066*
C40.1957 (3)0.7858 (5)0.3442 (3)0.0563 (10)
H40.15350.72280.31150.068*
C50.2441 (2)0.8281 (4)0.3068 (2)0.0427 (7)
C60.3866 (3)1.0774 (4)0.4800 (3)0.0526 (9)
H6A0.37911.12650.52690.063*
H6B0.38031.13910.43050.063*
C70.4777 (2)1.0188 (3)0.5323 (2)0.0416 (7)
C80.5447 (2)1.1246 (4)0.5841 (2)0.0443 (8)
C90.5332 (3)1.2363 (4)0.6268 (3)0.0535 (9)
H90.48151.24980.62230.064*
C100.5985 (3)1.3284 (4)0.6764 (3)0.0532 (9)
H100.59011.40240.70470.064*
C110.6736 (3)1.3097 (4)0.6831 (3)0.0591 (11)
H110.71711.37050.71690.071*
C120.6865 (3)1.2012 (4)0.6403 (3)0.0581 (11)
H120.73801.19060.64390.070*
C130.6231 (3)1.1077 (4)0.5919 (3)0.0542 (9)
H130.63271.03380.56450.065*
C140.4830 (2)0.9113 (4)0.6037 (3)0.0428 (7)
C150.4833 (3)0.9465 (4)0.6872 (3)0.0518 (9)
H150.48671.03530.70390.062*
C160.4785 (3)0.8508 (4)0.7464 (3)0.0547 (10)
H160.47770.87530.80160.066*
C170.4751 (3)0.7177 (4)0.7218 (3)0.0584 (11)
H170.47130.65250.76010.070*
C180.4773 (3)0.6844 (4)0.6424 (3)0.0603 (10)
H180.47630.59530.62750.072*
C190.4810 (3)0.7780 (4)0.5822 (3)0.0574 (10)
H190.48230.75180.52750.069*
C200.2248 (2)0.7717 (4)0.2092 (3)0.0482 (8)
H20A0.18830.83320.15820.058*
H20B0.19380.68950.19740.058*
C210.3036 (2)0.7445 (3)0.2015 (2)0.0392 (7)
C220.2752 (2)0.6821 (4)0.1024 (2)0.0410 (7)
C230.3043 (3)0.5634 (4)0.0909 (3)0.0542 (10)
H230.34420.51680.14540.065*
C240.2749 (3)0.5108 (5)0.0018 (3)0.0609 (11)
H240.29610.43060.00840.073*
C250.2159 (3)0.5761 (4)0.0816 (3)0.0561 (10)
H250.19490.53960.14300.067*
C260.1877 (3)0.6941 (5)0.0720 (3)0.0631 (12)
H260.14760.73960.12710.076*
C270.2175 (3)0.7490 (4)0.0192 (3)0.0602 (11)
H270.19850.83200.02430.072*
C280.3695 (2)0.6555 (3)0.2848 (2)0.0383 (7)
C290.4551 (2)0.6722 (4)0.3192 (3)0.0573 (10)
H290.47290.74060.29540.069*
C300.5141 (3)0.5866 (4)0.3892 (3)0.0618 (11)
H300.57140.59780.41230.074*
C310.4874 (3)0.4844 (4)0.4249 (3)0.0521 (10)
H310.52690.42710.47170.063*
C320.4018 (3)0.4677 (5)0.3905 (3)0.0618 (12)
H320.38400.39920.41430.074*
C330.3429 (2)0.5532 (4)0.3204 (3)0.0470 (9)
H330.28560.54210.29740.056*
N10.3029 (2)0.9203 (3)0.3487 (2)0.0467 (7)
O10.49165 (17)0.9616 (3)0.46054 (19)0.0497 (6)
H10.451 (3)0.917 (5)0.423 (4)0.060*
O20.34180 (18)0.8688 (3)0.2017 (2)0.0503 (6)
H2A0.352 (3)0.911 (5)0.250 (4)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (2)0.0442 (19)0.0435 (19)0.0163 (16)0.0219 (17)0.0076 (15)
C20.052 (2)0.066 (2)0.048 (2)0.0145 (19)0.0301 (19)0.0020 (18)
C30.060 (2)0.059 (2)0.065 (2)0.0100 (19)0.046 (2)0.008 (2)
C40.052 (2)0.063 (2)0.056 (2)0.0030 (18)0.0294 (19)0.0000 (19)
C50.0350 (16)0.0516 (19)0.0351 (16)0.0133 (14)0.0136 (14)0.0095 (14)
C60.060 (2)0.0430 (19)0.044 (2)0.0092 (17)0.0187 (18)0.0022 (15)
C70.0529 (19)0.0390 (16)0.0342 (16)0.0037 (14)0.0235 (15)0.0013 (13)
C80.053 (2)0.0441 (18)0.0312 (16)0.0001 (15)0.0186 (15)0.0053 (14)
C90.061 (2)0.049 (2)0.0378 (19)0.0057 (17)0.0163 (17)0.0007 (15)
C100.066 (2)0.0429 (19)0.043 (2)0.0024 (17)0.0228 (18)0.0019 (15)
C110.058 (2)0.049 (2)0.053 (2)0.0167 (18)0.017 (2)0.0018 (18)
C120.070 (3)0.055 (2)0.057 (2)0.023 (2)0.038 (2)0.0020 (18)
C130.056 (2)0.050 (2)0.058 (2)0.0109 (17)0.030 (2)0.0053 (18)
C140.0409 (17)0.0477 (18)0.0437 (18)0.0091 (14)0.0248 (15)0.0041 (14)
C150.066 (2)0.054 (2)0.062 (2)0.0202 (18)0.052 (2)0.0165 (18)
C160.056 (2)0.069 (2)0.063 (2)0.0193 (19)0.047 (2)0.030 (2)
C170.059 (2)0.061 (2)0.059 (2)0.0047 (19)0.034 (2)0.035 (2)
C180.054 (2)0.054 (2)0.061 (3)0.0055 (19)0.021 (2)0.011 (2)
C190.061 (2)0.0410 (18)0.062 (2)0.0001 (17)0.026 (2)0.0063 (18)
C200.0379 (17)0.053 (2)0.0414 (19)0.0019 (15)0.0122 (15)0.0011 (16)
C210.0383 (16)0.0383 (16)0.0353 (16)0.0021 (13)0.0151 (14)0.0014 (13)
C220.0394 (17)0.0510 (19)0.0329 (16)0.0028 (14)0.0189 (14)0.0014 (14)
C230.049 (2)0.068 (3)0.0390 (19)0.0143 (19)0.0181 (17)0.0059 (17)
C240.056 (2)0.068 (3)0.057 (2)0.013 (2)0.028 (2)0.026 (2)
C250.064 (2)0.057 (2)0.048 (2)0.0025 (18)0.030 (2)0.0255 (17)
C260.060 (2)0.072 (3)0.043 (2)0.036 (2)0.0165 (19)0.003 (2)
C270.062 (2)0.056 (2)0.043 (2)0.0024 (19)0.0134 (19)0.0019 (17)
C280.0431 (17)0.0413 (16)0.0285 (14)0.0007 (13)0.0172 (13)0.0062 (12)
C290.0421 (19)0.061 (2)0.052 (2)0.0080 (17)0.0125 (17)0.0114 (18)
C300.0364 (19)0.064 (2)0.067 (3)0.0021 (17)0.0139 (19)0.005 (2)
C310.060 (2)0.057 (2)0.0392 (17)0.0355 (18)0.0257 (17)0.0174 (16)
C320.069 (3)0.072 (3)0.061 (2)0.037 (2)0.046 (2)0.041 (2)
C330.0476 (18)0.060 (2)0.057 (2)0.0232 (16)0.0431 (18)0.0297 (18)
N10.0441 (16)0.0486 (17)0.0441 (16)0.0099 (13)0.0205 (13)0.0102 (13)
O10.0531 (15)0.0579 (16)0.0533 (15)0.0102 (12)0.0382 (13)0.0174 (13)
O20.0600 (16)0.0400 (13)0.0445 (14)0.0098 (12)0.0226 (13)0.0057 (11)
Geometric parameters (Å, º) top
C1—N11.353 (5)C17—H170.9300
C1—C21.394 (6)C18—C191.382 (6)
C1—C61.501 (6)C18—H180.9300
C2—C31.381 (6)C19—H190.9300
C2—H20.9300C20—C211.549 (5)
C3—C41.384 (6)C20—H20A0.9700
C3—H30.9300C20—H20B0.9700
C4—C51.381 (5)C21—O21.440 (4)
C4—H40.9300C21—C221.533 (5)
C5—N11.321 (5)C21—C281.548 (5)
C5—C201.530 (5)C22—C231.366 (5)
C6—C71.557 (5)C22—C271.381 (5)
C6—H6A0.9700C23—C241.401 (5)
C6—H6B0.9700C23—H230.9300
C7—O11.431 (4)C24—C251.351 (6)
C7—C81.518 (5)C24—H240.9300
C7—C141.547 (5)C25—C261.342 (5)
C8—C91.394 (5)C25—H250.9300
C8—C131.399 (6)C26—C271.388 (6)
C9—C101.401 (6)C26—H260.9300
C9—H90.9300C27—H270.9300
C10—C111.350 (6)C28—C291.390 (5)
C10—H100.9300C28—C331.390 (4)
C11—C121.380 (6)C29—C301.390 (6)
C11—H110.9300C29—H290.9300
C12—C131.388 (5)C30—C311.390 (6)
C12—H120.9300C30—H300.9300
C13—H130.9300C31—C321.390 (6)
C14—C191.387 (5)C31—H310.9300
C14—C151.387 (5)C32—C331.390 (5)
C15—C161.392 (5)C32—H320.9300
C15—H150.9300C33—H330.9300
C16—C171.394 (6)O1—H10.82 (5)
C16—H160.9300O2—H2A0.82 (5)
C17—C181.342 (7)
N1—C1—C2120.6 (4)C17—C18—C19122.3 (4)
N1—C1—C6118.0 (4)C17—C18—H18118.9
C2—C1—C6121.4 (4)C19—C18—H18118.9
C3—C2—C1119.8 (4)C18—C19—C14119.5 (4)
C3—C2—H2120.1C18—C19—H19120.2
C1—C2—H2120.1C14—C19—H19120.2
C2—C3—C4118.4 (4)C5—C20—C21114.8 (3)
C2—C3—H3120.8C5—C20—H20A108.6
C4—C3—H3120.8C21—C20—H20A108.6
C5—C4—C3118.9 (4)C5—C20—H20B108.6
C5—C4—H4120.5C21—C20—H20B108.6
C3—C4—H4120.5H20A—C20—H20B107.5
N1—C5—C4122.9 (4)O2—C21—C22105.3 (3)
N1—C5—C20118.7 (3)O2—C21—C28109.9 (3)
C4—C5—C20118.3 (4)C22—C21—C28110.7 (3)
C1—C6—C7113.3 (3)O2—C21—C20109.0 (3)
C1—C6—H6A108.9C22—C21—C20109.0 (3)
C7—C6—H6A108.9C28—C21—C20112.6 (3)
C1—C6—H6B108.9C23—C22—C27117.3 (4)
C7—C6—H6B108.9C23—C22—C21123.8 (3)
H6A—C6—H6B107.7C27—C22—C21119.0 (3)
O1—C7—C8106.9 (3)C22—C23—C24121.0 (4)
O1—C7—C14110.4 (3)C22—C23—H23119.5
C8—C7—C14111.6 (3)C24—C23—H23119.5
O1—C7—C6108.3 (3)C25—C24—C23120.3 (4)
C8—C7—C6112.1 (3)C25—C24—H24119.9
C14—C7—C6107.6 (3)C23—C24—H24119.9
C9—C8—C13118.1 (4)C26—C25—C24119.7 (4)
C9—C8—C7123.4 (3)C26—C25—H25120.2
C13—C8—C7118.4 (3)C24—C25—H25120.2
C8—C9—C10120.8 (4)C25—C26—C27120.8 (4)
C8—C9—H9119.6C25—C26—H26119.6
C10—C9—H9119.6C27—C26—H26119.6
C11—C10—C9120.0 (4)C22—C27—C26120.9 (4)
C11—C10—H10120.0C22—C27—H27119.5
C9—C10—H10120.0C26—C27—H27119.5
C10—C11—C12120.5 (4)C29—C28—C33120.0 (3)
C10—C11—H11119.7C29—C28—C21119.8 (3)
C12—C11—H11119.7C33—C28—C21120.1 (3)
C11—C12—C13120.5 (4)C28—C29—C30120.0 (4)
C11—C12—H12119.7C28—C29—H29120.0
C13—C12—H12119.7C30—C29—H29120.0
C12—C13—C8120.0 (4)C31—C30—C29120.0 (4)
C12—C13—H13120.0C31—C30—H30120.0
C8—C13—H13120.0C29—C30—H30120.0
C19—C14—C15118.6 (4)C30—C31—C32120.0 (3)
C19—C14—C7120.8 (3)C30—C31—H31120.0
C15—C14—C7120.5 (3)C32—C31—H31120.0
C14—C15—C16121.0 (4)C33—C32—C31120.0 (4)
C14—C15—H15119.5C33—C32—H32120.0
C16—C15—H15119.5C31—C32—H32120.0
C15—C16—C17119.0 (4)C32—C33—C28120.0 (3)
C15—C16—H16120.5C32—C33—H33120.0
C17—C16—H16120.5C28—C33—H33120.0
C18—C17—C16119.6 (3)C5—N1—C1119.2 (3)
C18—C17—H17120.2C7—O1—H1109 (3)
C16—C17—H17120.2C21—O2—H2A109 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (5)2.34 (5)3.013 (4)139 (4)
O2—H2A···N10.82 (5)2.20 (5)2.854 (4)136 (4)
C31—H31···Cg1i0.933.083.973 (3)162
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC33H29NO2
Mr471.57
Crystal system, space groupMonoclinic, Cc
Temperature (K)291
a, b, c (Å)18.492 (3), 10.1039 (17), 16.097 (3)
β (°) 121.234 (2)
V3)2571.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.980, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10905, 2960, 2695
Rint0.040
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.04
No. of reflections2960
No. of parameters331
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (5)2.34 (5)3.013 (4)139 (4)
O2—H2A···N10.82 (5)2.20 (5)2.854 (4)136 (4)
C31—H31···Cg1i0.933.083.973 (3)162
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank the Natural Science Foundation of Jiangsu Higher Education Institutions of China (grant No. 07KJD150101) for financial support.

References

First citationBerg, J. M. & Holm, R. H. (1985). J. Am. Chem. Soc. 107, 917–925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBergbreiter, D. E., Osburn, P. L. & Liu, Y.-S. (1999). J. Am. Chem. Soc. 121, 9531–9538.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoom, M. E. van der, Liou, S.-Y., Ben-David, Y., Vigalok, A. & Milstein, D. (1997). Angew. Chem. Int. Ed. Engl. 36, 625–626.  Google Scholar
First citationBoom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupont, J., Consorti, C. S. & Spencer, J. (2005). Chem. Rev. 105, 2527–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGauvin, R. M., Rozenberg, H., Shimon, L. J. W. & Milstein, D. (2001). Organometallics, 20, 1719–1724.  Web of Science CrossRef CAS Google Scholar
First citationHaenel, M. W., Oevers, S., Angermund, K., Kaska, W. C., Fan, H.-J. & Hall, M. B. (2001). Angew. Chem. Int. Ed. 40, 3596–3600.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigalok, A. & Milstein, D. (2001). Acc. Chem. Res. 34, 798–807.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds