organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o338-o339

2-(3-Chloro­phen­yl)-4,5-di­hydro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 6 January 2009; accepted 10 January 2009; online 17 January 2009)

In the title compound, C9H9ClN2, a substituted imidazoline, the six- and five-membered rings are twisted from each other, making a dihedral angle of 17.07 (5)°. In the crystal structure, a short Cl⋯Cl [3.3540 (3) Å] inter­action is observed. Neighbouring mol­ecules are linked together by inter­molecular N—H⋯N hydrogen bonds into a one-dimensional infinite chain along the [101] direction and short Cl⋯Cl contacts link the chains into a three-dimensional network. There is also a significant π-stacking inter­action between the planar sections of the six- and five-membered rings.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure and the synthesis, see: Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-o529.]); Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.]). For the biological and pharmacological activities of imidazoline derivatives, see, for example: Blancafort (1978[Blancafort, P. (1978). Drugs Future, 3, 592-592.]); Chan (1993[Chan, S. (1993). Clin. Sci. 85, 671-677.]); Vizi (1986[Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.]); Li et al. (1996[Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.]); Ueno et al. (1995[Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.]); Corey & Grogan (1999[Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN2

  • Mr = 180.63

  • Orthorhombic, F d d 2

  • a = 19.7329 (8) Å

  • b = 39.1479 (18) Å

  • c = 4.3493 (2) Å

  • V = 3359.8 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.50 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.964

  • 14166 measured reflections

  • 3438 independent reflections

  • 3224 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.10

  • 3438 reflections

  • 113 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1429 Friedel pairs

  • Flack parameter: −0.05 (4)

Table 1
Selected interatomic distances (Å)

Cl1⋯Cl1i 3.3540 (3)
C1⋯C3ii 3.3945 (12)
C1⋯C4ii 3.3301 (15)
C4⋯C6iii 3.3997 (15)
C5⋯C7iii 3.3716 (12)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x, y, z+1; (iii) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2iv 0.896 (16) 2.118 (16) 3.0113 (11) 174.5 (15)
Symmetry code: (iv) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including antihypertensive (Blancafort, 1978), antihyperglycemic (Chan, 1993), antidepressive (Vizi, 1986), antihypercholesterolemic (Li et al., 1996) and antiinflammatory (Ueno et al., 1995) properties. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan, 1999). Due to these important applications of imidazolines, here we report the crystal structure of the title compound, (I).

In the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany et al., 2004; Kia et al., 2008). The six- and five-membered rings are not coplanar and are twisted from each other by a dihedral angle of 18.07 (5)°. The interesting feature of the crystal structure is the short Cl···Cl [3.3540 (3) Å] (Table 1) which is shorter than the sum of the van der Waals radius of this atom. In the crystal structure (Fig. 2), neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds (Table 2) into 1-D infinite chains along the [1 0 1] direction and short Cl···Cl contacts link these chains into a 3-D network. There is also a significant π-stacking interaction between the planar sections associated with C1–C3–C4–C5–C6 and C7 of the six- and five-membered rings respectively (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure and the synthesis, see: Stibrany et al. (2004); Kia et al. (2008). For the biological and pharmacological activities, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999).

Experimental top

The synthetic method was based on the previous work (Stibrany et al., 2004), except that 10 mmol of 3-chloro-2-cyanobenzene and 40 mmol of ethylenediamine were used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an acetonitrile solution at room temperature.

Refinement top

The H atom bound to N1 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined in a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c-axis showing linking of molecules through intermolecular N—H···N hydrogen bonds and short Cl···Cl interactions. The intermolecular interactions are shown as dashed lines.
2-(3-Chlorophenyl)-4,5-dihydro-1H-imidazole top
Crystal data top
C9H9ClN2F(000) = 1504
Mr = 180.63Dx = 1.428 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 8962 reflections
a = 19.7329 (8) Åθ = 2.9–36.7°
b = 39.1479 (18) ŵ = 0.39 mm1
c = 4.3493 (2) ÅT = 100 K
V = 3359.8 (3) Å3Block, colourless
Z = 160.51 × 0.50 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3438 independent reflections
Radiation source: fine-focus sealed tube3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3125
Tmin = 0.825, Tmax = 0.964k = 6060
14166 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.037P)2 + 1.1492P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3438 reflectionsΔρmax = 0.33 e Å3
113 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1429 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Crystal data top
C9H9ClN2V = 3359.8 (3) Å3
Mr = 180.63Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 19.7329 (8) ŵ = 0.39 mm1
b = 39.1479 (18) ÅT = 100 K
c = 4.3493 (2) Å0.51 × 0.50 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3224 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.964Rint = 0.025
14166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.33 e Å3
S = 1.10Δρmin = 0.15 e Å3
3438 reflectionsAbsolute structure: Flack (1983), 1429 Friedel pairs
113 parametersAbsolute structure parameter: 0.05 (4)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.165233 (12)0.246951 (6)0.02330 (7)0.02846 (7)
N10.00209 (4)0.10678 (2)0.1715 (2)0.01782 (15)
N20.11053 (4)0.11676 (2)0.3205 (2)0.01792 (15)
C10.10570 (4)0.18532 (2)0.0803 (2)0.01732 (16)
H1A0.14050.18030.21720.021*
C20.10314 (4)0.21685 (2)0.0634 (2)0.01837 (17)
C30.05234 (5)0.22529 (2)0.2708 (2)0.01901 (17)
H3A0.05170.24650.36670.023*
C40.00232 (5)0.20104 (3)0.3313 (3)0.01959 (17)
H4A0.03230.20620.46860.024*
C50.00358 (5)0.16926 (2)0.1890 (2)0.01739 (16)
H5A0.03010.15330.23130.021*
C60.05544 (4)0.16118 (2)0.0174 (2)0.01498 (14)
C70.05755 (4)0.12791 (2)0.1766 (2)0.01505 (15)
C80.01553 (5)0.07848 (3)0.3841 (3)0.02052 (18)
H8A0.00530.05660.29070.025*
H8B0.01020.08090.57280.025*
C90.09225 (5)0.08268 (3)0.4421 (3)0.02013 (18)
H9A0.10210.08130.66020.024*
H9B0.11750.06500.33640.024*
H1N10.0392 (8)0.1159 (4)0.148 (4)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01974 (10)0.01899 (11)0.04665 (16)0.00554 (8)0.00483 (11)0.00392 (11)
N10.0124 (3)0.0167 (4)0.0244 (4)0.0016 (3)0.0022 (3)0.0014 (3)
N20.0132 (3)0.0161 (3)0.0245 (4)0.0007 (3)0.0013 (3)0.0019 (3)
C10.0122 (3)0.0165 (4)0.0232 (4)0.0008 (3)0.0002 (3)0.0003 (3)
C20.0139 (3)0.0166 (4)0.0246 (4)0.0010 (3)0.0019 (3)0.0004 (3)
C30.0189 (4)0.0171 (4)0.0210 (4)0.0013 (3)0.0025 (3)0.0013 (3)
C40.0180 (4)0.0211 (4)0.0196 (4)0.0016 (3)0.0018 (3)0.0000 (3)
C50.0148 (3)0.0192 (4)0.0181 (4)0.0000 (3)0.0006 (3)0.0007 (3)
C60.0120 (3)0.0149 (4)0.0180 (4)0.0012 (3)0.0018 (3)0.0014 (3)
C70.0117 (3)0.0158 (4)0.0177 (4)0.0003 (3)0.0011 (3)0.0016 (3)
C80.0164 (4)0.0188 (4)0.0264 (4)0.0021 (3)0.0011 (3)0.0042 (3)
C90.0159 (4)0.0184 (4)0.0260 (5)0.0002 (3)0.0008 (3)0.0039 (3)
Geometric parameters (Å, º) top
Cl1—C21.7413 (10)C3—H3A0.9300
N1—C71.3719 (12)C4—C51.3897 (14)
N1—C81.4675 (13)C4—H4A0.9300
N1—H1N10.896 (16)C5—C61.3976 (13)
N2—C71.2942 (12)C5—H5A0.9300
N2—C91.4799 (13)C6—C71.4759 (13)
C1—C21.3844 (14)C8—C91.5436 (13)
C1—C61.3969 (12)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.3884 (14)C9—H9A0.9700
C3—C41.3944 (14)C9—H9B0.9700
Cl1···Cl1i3.3540 (3)C4···C6iii3.3997 (15)
C1···C3ii3.3945 (12)C5···C7iii3.3716 (12)
C1···C4ii3.3301 (15)
C7—N1—C8107.50 (7)C1—C6—C5119.51 (8)
C7—N1—H1N1119.1 (10)C1—C6—C7119.03 (8)
C8—N1—H1N1122.5 (11)C5—C6—C7121.45 (8)
C7—N2—C9106.25 (7)N2—C7—N1116.68 (8)
C2—C1—C6119.26 (9)N2—C7—C6123.17 (8)
C2—C1—H1A120.4N1—C7—C6120.13 (8)
C6—C1—H1A120.4N1—C8—C9101.53 (7)
C1—C2—C3122.13 (9)N1—C8—H8A111.5
C1—C2—Cl1118.68 (7)C9—C8—H8A111.5
C3—C2—Cl1119.19 (8)N1—C8—H8B111.5
C2—C3—C4118.15 (9)C9—C8—H8B111.5
C2—C3—H3A120.9H8A—C8—H8B109.3
C4—C3—H3A120.9N2—C9—C8106.06 (8)
C5—C4—C3120.84 (9)N2—C9—H9A110.5
C5—C4—H4A119.6C8—C9—H9A110.5
C3—C4—H4A119.6N2—C9—H9B110.5
C4—C5—C6120.12 (8)C8—C9—H9B110.5
C4—C5—H5A119.9H9A—C9—H9B108.7
C6—C5—H5A119.9
C6—C1—C2—C30.48 (14)C9—N2—C7—C6179.11 (8)
C6—C1—C2—Cl1178.76 (7)C8—N1—C7—N29.55 (12)
C1—C2—C3—C40.66 (14)C8—N1—C7—C6171.73 (8)
Cl1—C2—C3—C4178.58 (8)C1—C6—C7—N215.38 (13)
C2—C3—C4—C50.37 (15)C5—C6—C7—N2166.02 (9)
C3—C4—C5—C60.09 (15)C1—C6—C7—N1165.98 (9)
C2—C1—C6—C50.00 (13)C5—C6—C7—N112.62 (13)
C2—C1—C6—C7178.62 (8)C7—N1—C8—C913.33 (10)
C4—C5—C6—C10.28 (14)C7—N2—C9—C88.35 (11)
C4—C5—C6—C7178.87 (9)N1—C8—C9—N213.08 (10)
C9—N2—C7—N10.43 (11)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2iv0.896 (16)2.118 (16)3.0113 (11)174.5 (15)
Symmetry code: (iv) x1/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC9H9ClN2
Mr180.63
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)19.7329 (8), 39.1479 (18), 4.3493 (2)
V3)3359.8 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.51 × 0.50 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.825, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14166, 3438, 3224
Rint0.025
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.10
No. of reflections3438
No. of parameters113
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.15
Absolute structureFlack (1983), 1429 Friedel pairs
Absolute structure parameter0.05 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cl1···Cl1i3.3540 (3)C4···C6iii3.3997 (15)
C1···C3ii3.3945 (12)C5···C7iii3.3716 (12)
C1···C4ii3.3301 (15)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2iv0.896 (16)2.118 (16)3.0113 (11)174.5 (15)
Symmetry code: (iv) x1/4, y+1/4, z1/4.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlancafort, P. (1978). Drugs Future, 3, 592–592.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. (1993). Clin. Sci. 85, 671–677.  CAS PubMed Web of Science Google Scholar
First citationCorey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUeno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVizi, E. S. (1986). Med. Res. Rev. 6, 431–449.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o338-o339
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds