metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-ammonio-4-methyl­pentan-2-one-κO)dioxalato-κ4O1,O2-copper(II)

aInstitute of Pesticide Science, Northwest Agricultural & Forestry University, YangLing, Shaanxi 712100, People's Republic of China
*Correspondence e-mail: wenjun_wu@263.net

(Received 4 August 2008; accepted 12 December 2008; online 14 January 2009)

The title compound, [Cu(C2O4)2(C6H14NO)2], was synthesized by mixing diacetonamine hydrogen oxalate and copper sulfate in ethanol/water. The mol­ecule is centrosymmetric, so two pairs of equivalent ligands lie trans to each other. The CuII center, located on a position with 2/m site symmetry, is six-coordinated by four O atoms from two oxalate ligands at short distances and the carbonyl O atoms from the 4-amino-4-methyl­pentan-2-one ligands at longer distances. Mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds between the amino groups and carbonyl O atoms; no intra­molecular hydrogen bonds are formed.

Related literature

For the preparation of diacetonamine, see: Haeseler (1925[Haeseler (1925). J. Am. Chem. Soc. 47, 1195y.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2O4)2(C6H14NO)2]

  • Mr = 471.94

  • Monoclinic, C 2/m

  • a = 13.639 (3) Å

  • b = 7.9749 (16) Å

  • c = 10.958 (2) Å

  • β = 113.27 (3)°

  • V = 1094.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 113 (2) K

  • 0.16 × 0.14 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalStructure and CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.850, Tmax = 0.867

  • 4513 measured reflections

  • 1394 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.075

  • S = 1.11

  • 1394 reflections

  • 83 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9383 (11)
Cu1—O3 2.663 (2)
O1—Cu1—O1i 179.999 (2)
O1—Cu1—O1ii 94.90 (6)
O1i—Cu1—O1ii 85.10 (6)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2iii 0.86 (3) 2.23 (2) 2.950 (2) 141.8 (5)
N1—H1A⋯O2iv 0.86 (3) 2.23 (2) 2.950 (2) 141.8 (5)
N1—H1B⋯O2v 0.883 (18) 2.014 (19) 2.8651 (14) 161.5 (16)
Symmetry codes: (iii) -x+1, y, -z; (iv) -x+1, -y+1, -z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalStructure and CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalStructure and CrystalClear. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

In the screening of novel antibiotics, diacetonamine was obtained in the procedure of isolating active ingredients by the silica gel chromatography. Diacetonamine exhibites moderatly antimicrobial activities against many species of plant-pathogenic fungus. To enhance the bio-activity, a complex was designed and prepared by the mixture of diacetonamine hydrogen oxalate and copper sulfate. Compared with diacetonamine, the antimicrobial activities of copper complex was increased dramaticaly. Diacetonamine could be prepared from a mixture of mesityl oxide with aqueous ammonia or liquid ammonia(Haeseler, 1925). In this paper, [Cu(C6H13NO)2 (C2H2O4)2] was synthesized by the reaction of CuSO4.5H2O and diacetonamine hydrogen oxalate in ethanol/water and the structure of the resulting complex is presented herein.

Related literature top

For the preparation of diacetonamine, see: Haeseler (1925).

Experimental top

Diacetonamine hydrogen oxalate(0.6 mmol 123 mg) was dissolved in ethnaol/water (2/1,volume ratio, 10 ml) and the solution was heated to boiling. Copper sulfate(0.3 mmol 75 mg) was dissolved in deionized water(10 ml), and was added dropwise to the solution and stirred for 10 minutes. The mother liquid was placed at room temperature, and single crystals were obtained on standing.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the coordination geometry. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down the c-axis,showing hydrogen bonds.
Bis(4-ammonio-4-methylpentan-2-one-κO)dioxalato- κ4O1,O2)copper(II) top
Crystal data top
[Cu(C2O4)2(C6H14NO)2]F(000) = 494
Mr = 471.94Dx = 1.432 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 13.639 (3) ÅCell parameters from 2107 reflections
b = 7.9749 (16) Åθ = 3.3–27.9°
c = 10.958 (2) ŵ = 1.05 mm1
β = 113.27 (3)°T = 113 K
V = 1094.9 (4) Å3Prism, colorless
Z = 20.16 × 0.14 × 0.14 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1394 independent reflections
Radiation source: rotating anode1247 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.3°
ω and ϕ scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 109
Tmin = 0.850, Tmax = 0.867l = 1214
4513 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.4743P]
where P = (Fo2 + 2Fc2)/3
1394 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C2O4)2(C6H14NO)2]V = 1094.9 (4) Å3
Mr = 471.94Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.639 (3) ŵ = 1.05 mm1
b = 7.9749 (16) ÅT = 113 K
c = 10.958 (2) Å0.16 × 0.14 × 0.14 mm
β = 113.27 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1394 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1247 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.867Rint = 0.033
4513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
1394 reflectionsΔρmin = 0.45 e Å3
83 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01576 (13)
O10.44732 (8)0.33564 (13)0.35854 (10)0.0177 (2)
O20.36121 (9)0.32743 (14)0.13800 (10)0.0200 (2)
N10.76865 (14)0.50000.11200 (17)0.0153 (4)
H1A0.727 (2)0.50000.029 (3)0.023*
H1B0.8108 (14)0.412 (2)0.1262 (17)0.023*
O30.67707 (15)0.50000.45267 (19)0.0361 (4)
C10.40342 (10)0.40251 (18)0.24483 (13)0.0142 (3)
C20.8619 (2)0.50000.5942 (2)0.0320 (6)
H2A0.83640.50000.66420.048*
H2B0.90450.40170.60130.048*
C30.76883 (19)0.50000.4625 (2)0.0216 (5)
C40.80035 (16)0.50000.3451 (2)0.0170 (4)
H4A0.84410.40310.35240.020*
C50.71136 (16)0.50000.2061 (2)0.0168 (4)
C60.64379 (13)0.6585 (2)0.17734 (17)0.0274 (4)
H6A0.59340.65850.08410.041*
H6B0.69030.75700.19440.041*
H6C0.60420.66200.23490.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0216 (2)0.00972 (19)0.01316 (19)0.0000.00386 (14)0.000
O10.0239 (6)0.0113 (5)0.0155 (5)0.0008 (4)0.0053 (4)0.0002 (4)
O20.0245 (6)0.0152 (6)0.0166 (5)0.0027 (4)0.0042 (4)0.0028 (4)
N10.0160 (9)0.0143 (9)0.0147 (8)0.0000.0052 (7)0.000
O30.0348 (10)0.0458 (12)0.0400 (10)0.0000.0280 (9)0.000
C10.0133 (7)0.0114 (7)0.0189 (7)0.0013 (5)0.0074 (6)0.0009 (5)
C20.0452 (15)0.0325 (14)0.0208 (11)0.0000.0156 (11)0.000
C30.0303 (12)0.0149 (10)0.0248 (11)0.0000.0165 (9)0.000
C40.0168 (10)0.0172 (10)0.0189 (10)0.0000.0089 (8)0.000
C50.0152 (10)0.0172 (11)0.0200 (10)0.0000.0092 (8)0.000
C60.0222 (8)0.0298 (10)0.0326 (9)0.0100 (7)0.0133 (7)0.0059 (7)
Geometric parameters (Å, º) top
Cu1—O1i1.9383 (11)C1—C1i1.555 (3)
Cu1—O11.9383 (11)C2—C31.499 (3)
Cu1—O1ii1.9383 (11)C2—H2A0.9601
Cu1—O1iii1.9383 (11)C2—H2B0.9600
Cu1—O32.663 (2)C3—C41.508 (3)
Cu1—O32.663 (2)C4—C51.528 (3)
O1—C11.2672 (17)C4—H4A0.9601
O2—C11.2361 (17)C5—C61.522 (2)
N1—C51.520 (3)C5—C6i1.522 (2)
N1—H1A0.86 (3)C6—H6A0.9800
N1—H1B0.883 (18)C6—H6B0.9800
O3—C31.213 (3)C6—H6C0.9800
O1i—Cu1—O185.10 (6)O3—C3—C4123.8 (2)
O1i—Cu1—O1ii94.90 (6)C2—C3—C4113.71 (19)
O1—Cu1—O1ii179.999 (2)C3—C4—C5117.95 (18)
O1i—Cu1—O1iii180C3—C4—H4A107.8
O1—Cu1—O1iii94.90 (6)C5—C4—H4A107.8
O1ii—Cu1—O1iii85.10 (6)N1—C5—C6106.94 (11)
C1—O1—Cu1112.56 (10)N1—C5—C6i106.94 (11)
C5—N1—H1A114.0 (17)C6—C5—C6i112.28 (19)
C5—N1—H1B110.8 (11)N1—C5—C4104.95 (16)
H1A—N1—H1B107.6 (14)C6—C5—C4112.57 (11)
O2—C1—O1126.13 (14)C6i—C5—C4112.57 (11)
O2—C1—C1i118.98 (8)C5—C6—H6A109.5
O1—C1—C1i114.89 (8)C5—C6—H6B109.5
C3—C2—H2A109.5H6A—C6—H6B109.5
C3—C2—H2B109.5C5—C6—H6C109.5
H2A—C2—H2B109.5H6A—C6—H6C109.5
O3—C3—C2122.5 (2)H6B—C6—H6C109.5
O1i—Cu1—O1—C11.03 (11)O3—C3—C4—C50.0
O1ii—Cu1—O1—C171 (11)C2—C3—C4—C5180.0
O1iii—Cu1—O1—C1178.97 (11)C3—C4—C5—N1180.0
Cu1—O1—C1—O2178.41 (11)C3—C4—C5—C664.06 (12)
Cu1—O1—C1—C1i0.84 (9)C3—C4—C5—C6i64.06 (12)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iv0.86 (3)2.23 (2)2.950 (2)142 (1)
N1—H1A···O2v0.86 (3)2.23 (2)2.950 (2)142 (1)
N1—H1B···O2vi0.883 (18)2.014 (19)2.8651 (14)161.5 (16)
Symmetry codes: (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)2(C6H14NO)2]
Mr471.94
Crystal system, space groupMonoclinic, C2/m
Temperature (K)113
a, b, c (Å)13.639 (3), 7.9749 (16), 10.958 (2)
β (°) 113.27 (3)
V3)1094.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.16 × 0.14 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.850, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
4513, 1394, 1247
Rint0.033
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.11
No. of reflections1394
No. of parameters83
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.45

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Selected geometric parameters (Å, º) top
Cu1—O11.9383 (11)
O1—Cu1—O1i179.999 (2)O1i—Cu1—O1ii85.10 (6)
O1—Cu1—O1ii94.90 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.86 (3)2.23 (2)2.950 (2)141.8 (5)
N1—H1A···O2iv0.86 (3)2.23 (2)2.950 (2)141.8 (5)
N1—H1B···O2v0.883 (18)2.014 (19)2.8651 (14)161.5 (16)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr Qingmin Wang for assistance with the X-ray structure determination.

References

First citationHaeseler (1925). J. Am. Chem. Soc. 47, 1195yGoogle Scholar
First citationRigaku (2005). CrystalStructure and CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds