Related literature
For the preparation of diacetonamine, see: Haeseler (1925).
Experimental
Crystal data
[Cu(C2O4)2(C6H14NO)2] Mr = 471.94 Monoclinic, C 2/m a = 13.639 (3) Å b = 7.9749 (16) Å c = 10.958 (2) Å β = 113.27 (3)° V = 1094.9 (4) Å3 Z = 2 Mo Kα radiation μ = 1.05 mm−1 T = 113 (2) K 0.16 × 0.14 × 0.14 mm
|
Data collection
Rigaku Saturn CCD area-detector diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) Tmin = 0.850, Tmax = 0.867 4513 measured reflections 1394 independent reflections 1247 reflections with I > 2σ(I) Rint = 0.033
|
Cu1—O1 | 1.9383 (11) | Cu1—O3 | 2.663 (2) | | O1—Cu1—O1i | 179.999 (2) | O1—Cu1—O1ii | 94.90 (6) | O1i—Cu1—O1ii | 85.10 (6) | Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1A⋯O2iii | 0.86 (3) | 2.23 (2) | 2.950 (2) | 141.8 (5) | N1—H1A⋯O2iv | 0.86 (3) | 2.23 (2) | 2.950 (2) | 141.8 (5) | N1—H1B⋯O2v | 0.883 (18) | 2.014 (19) | 2.8651 (14) | 161.5 (16) | Symmetry codes: (iii) -x+1, y, -z; (iv) -x+1, -y+1, -z; (v) . | |
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).
Supporting information
Diacetonamine hydrogen oxalate(0.6 mmol 123 mg) was dissolved in ethnaol/water (2/1,volume ratio, 10 ml) and the solution was heated to boiling. Copper sulfate(0.3 mmol 75 mg) was dissolved in deionized water(10 ml), and was added dropwise to the solution and stirred for 10 minutes. The mother liquid was placed at room temperature, and single crystals were obtained on standing.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).
Bis(4-ammonio-4-methylpentan-2-one-
κO)dioxalato-
κ4O1,
O2)copper(II)
top Crystal data top [Cu(C2O4)2(C6H14NO)2] | F(000) = 494 |
Mr = 471.94 | Dx = 1.432 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 13.639 (3) Å | Cell parameters from 2107 reflections |
b = 7.9749 (16) Å | θ = 3.3–27.9° |
c = 10.958 (2) Å | µ = 1.05 mm−1 |
β = 113.27 (3)° | T = 113 K |
V = 1094.9 (4) Å3 | Prism, colorless |
Z = 2 | 0.16 × 0.14 × 0.14 mm |
Data collection top Rigaku Saturn CCD area-detector diffractometer | 1394 independent reflections |
Radiation source: rotating anode | 1247 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.033 |
Detector resolution: 7.31 pixels mm-1 | θmax = 27.9°, θmin = 3.3° |
ω and ϕ scans | h = −17→17 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→9 |
Tmin = 0.850, Tmax = 0.867 | l = −12→14 |
4513 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0374P)2 + 0.4743P] where P = (Fo2 + 2Fc2)/3 |
1394 reflections | (Δ/σ)max = 0.001 |
83 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Crystal data top [Cu(C2O4)2(C6H14NO)2] | V = 1094.9 (4) Å3 |
Mr = 471.94 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 13.639 (3) Å | µ = 1.05 mm−1 |
b = 7.9749 (16) Å | T = 113 K |
c = 10.958 (2) Å | 0.16 × 0.14 × 0.14 mm |
β = 113.27 (3)° | |
Data collection top Rigaku Saturn CCD area-detector diffractometer | 1394 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1247 reflections with I > 2σ(I) |
Tmin = 0.850, Tmax = 0.867 | Rint = 0.033 |
4513 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.31 e Å−3 |
1394 reflections | Δρmin = −0.45 e Å−3 |
83 parameters | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.01576 (13) | |
O1 | 0.44732 (8) | 0.33564 (13) | 0.35854 (10) | 0.0177 (2) | |
O2 | 0.36121 (9) | 0.32743 (14) | 0.13800 (10) | 0.0200 (2) | |
N1 | 0.76865 (14) | 0.5000 | 0.11200 (17) | 0.0153 (4) | |
H1A | 0.727 (2) | 0.5000 | 0.029 (3) | 0.023* | |
H1B | 0.8108 (14) | 0.412 (2) | 0.1262 (17) | 0.023* | |
O3 | 0.67707 (15) | 0.5000 | 0.45267 (19) | 0.0361 (4) | |
C1 | 0.40342 (10) | 0.40251 (18) | 0.24483 (13) | 0.0142 (3) | |
C2 | 0.8619 (2) | 0.5000 | 0.5942 (2) | 0.0320 (6) | |
H2A | 0.8364 | 0.5000 | 0.6642 | 0.048* | |
H2B | 0.9045 | 0.4017 | 0.6013 | 0.048* | |
C3 | 0.76883 (19) | 0.5000 | 0.4625 (2) | 0.0216 (5) | |
C4 | 0.80035 (16) | 0.5000 | 0.3451 (2) | 0.0170 (4) | |
H4A | 0.8441 | 0.4031 | 0.3524 | 0.020* | |
C5 | 0.71136 (16) | 0.5000 | 0.2061 (2) | 0.0168 (4) | |
C6 | 0.64379 (13) | 0.6585 (2) | 0.17734 (17) | 0.0274 (4) | |
H6A | 0.5934 | 0.6585 | 0.0841 | 0.041* | |
H6B | 0.6903 | 0.7570 | 0.1944 | 0.041* | |
H6C | 0.6042 | 0.6620 | 0.2349 | 0.041* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0216 (2) | 0.00972 (19) | 0.01316 (19) | 0.000 | 0.00386 (14) | 0.000 |
O1 | 0.0239 (6) | 0.0113 (5) | 0.0155 (5) | −0.0008 (4) | 0.0053 (4) | 0.0002 (4) |
O2 | 0.0245 (6) | 0.0152 (6) | 0.0166 (5) | −0.0027 (4) | 0.0042 (4) | −0.0028 (4) |
N1 | 0.0160 (9) | 0.0143 (9) | 0.0147 (8) | 0.000 | 0.0052 (7) | 0.000 |
O3 | 0.0348 (10) | 0.0458 (12) | 0.0400 (10) | 0.000 | 0.0280 (9) | 0.000 |
C1 | 0.0133 (7) | 0.0114 (7) | 0.0189 (7) | −0.0013 (5) | 0.0074 (6) | −0.0009 (5) |
C2 | 0.0452 (15) | 0.0325 (14) | 0.0208 (11) | 0.000 | 0.0156 (11) | 0.000 |
C3 | 0.0303 (12) | 0.0149 (10) | 0.0248 (11) | 0.000 | 0.0165 (9) | 0.000 |
C4 | 0.0168 (10) | 0.0172 (10) | 0.0189 (10) | 0.000 | 0.0089 (8) | 0.000 |
C5 | 0.0152 (10) | 0.0172 (11) | 0.0200 (10) | 0.000 | 0.0092 (8) | 0.000 |
C6 | 0.0222 (8) | 0.0298 (10) | 0.0326 (9) | 0.0100 (7) | 0.0133 (7) | 0.0059 (7) |
Geometric parameters (Å, º) top Cu1—O1i | 1.9383 (11) | C1—C1i | 1.555 (3) |
Cu1—O1 | 1.9383 (11) | C2—C3 | 1.499 (3) |
Cu1—O1ii | 1.9383 (11) | C2—H2A | 0.9601 |
Cu1—O1iii | 1.9383 (11) | C2—H2B | 0.9600 |
Cu1—O3 | 2.663 (2) | C3—C4 | 1.508 (3) |
Cu1—O3 | 2.663 (2) | C4—C5 | 1.528 (3) |
O1—C1 | 1.2672 (17) | C4—H4A | 0.9601 |
O2—C1 | 1.2361 (17) | C5—C6 | 1.522 (2) |
N1—C5 | 1.520 (3) | C5—C6i | 1.522 (2) |
N1—H1A | 0.86 (3) | C6—H6A | 0.9800 |
N1—H1B | 0.883 (18) | C6—H6B | 0.9800 |
O3—C3 | 1.213 (3) | C6—H6C | 0.9800 |
| | | |
O1i—Cu1—O1 | 85.10 (6) | O3—C3—C4 | 123.8 (2) |
O1i—Cu1—O1ii | 94.90 (6) | C2—C3—C4 | 113.71 (19) |
O1—Cu1—O1ii | 179.999 (2) | C3—C4—C5 | 117.95 (18) |
O1i—Cu1—O1iii | 180 | C3—C4—H4A | 107.8 |
O1—Cu1—O1iii | 94.90 (6) | C5—C4—H4A | 107.8 |
O1ii—Cu1—O1iii | 85.10 (6) | N1—C5—C6 | 106.94 (11) |
C1—O1—Cu1 | 112.56 (10) | N1—C5—C6i | 106.94 (11) |
C5—N1—H1A | 114.0 (17) | C6—C5—C6i | 112.28 (19) |
C5—N1—H1B | 110.8 (11) | N1—C5—C4 | 104.95 (16) |
H1A—N1—H1B | 107.6 (14) | C6—C5—C4 | 112.57 (11) |
O2—C1—O1 | 126.13 (14) | C6i—C5—C4 | 112.57 (11) |
O2—C1—C1i | 118.98 (8) | C5—C6—H6A | 109.5 |
O1—C1—C1i | 114.89 (8) | C5—C6—H6B | 109.5 |
C3—C2—H2A | 109.5 | H6A—C6—H6B | 109.5 |
C3—C2—H2B | 109.5 | C5—C6—H6C | 109.5 |
H2A—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
O3—C3—C2 | 122.5 (2) | H6B—C6—H6C | 109.5 |
| | | |
O1i—Cu1—O1—C1 | −1.03 (11) | O3—C3—C4—C5 | 0.0 |
O1ii—Cu1—O1—C1 | −71 (11) | C2—C3—C4—C5 | 180.0 |
O1iii—Cu1—O1—C1 | 178.97 (11) | C3—C4—C5—N1 | 180.0 |
Cu1—O1—C1—O2 | −178.41 (11) | C3—C4—C5—C6 | 64.06 (12) |
Cu1—O1—C1—C1i | 0.84 (9) | C3—C4—C5—C6i | −64.06 (12) |
Symmetry codes: (i) x, −y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2iv | 0.86 (3) | 2.23 (2) | 2.950 (2) | 142 (1) |
N1—H1A···O2v | 0.86 (3) | 2.23 (2) | 2.950 (2) | 142 (1) |
N1—H1B···O2vi | 0.883 (18) | 2.014 (19) | 2.8651 (14) | 161.5 (16) |
Symmetry codes: (iv) −x+1, y, −z; (v) −x+1, −y+1, −z; (vi) x+1/2, −y+1/2, z. |
Experimental details
Crystal data |
Chemical formula | [Cu(C2O4)2(C6H14NO)2] |
Mr | 471.94 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 113 |
a, b, c (Å) | 13.639 (3), 7.9749 (16), 10.958 (2) |
β (°) | 113.27 (3) |
V (Å3) | 1094.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.05 |
Crystal size (mm) | 0.16 × 0.14 × 0.14 |
|
Data collection |
Diffractometer | Rigaku Saturn CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.850, 0.867 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4513, 1394, 1247 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.657 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.075, 1.11 |
No. of reflections | 1394 |
No. of parameters | 83 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.45 |
Selected geometric parameters (Å, º) topCu1—O1 | 1.9383 (11) | | |
| | | |
O1—Cu1—O1i | 179.999 (2) | O1i—Cu1—O1ii | 85.10 (6) |
O1—Cu1—O1ii | 94.90 (6) | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2iii | 0.86 (3) | 2.23 (2) | 2.950 (2) | 141.8 (5) |
N1—H1A···O2iv | 0.86 (3) | 2.23 (2) | 2.950 (2) | 141.8 (5) |
N1—H1B···O2v | 0.883 (18) | 2.014 (19) | 2.8651 (14) | 161.5 (16) |
Symmetry codes: (iii) −x+1, y, −z; (iv) −x+1, −y+1, −z; (v) x+1/2, −y+1/2, z. |
Acknowledgements
The authors thank Dr Qingmin Wang for assistance with the X-ray structure determination.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
In the screening of novel antibiotics, diacetonamine was obtained in the procedure of isolating active ingredients by the silica gel chromatography. Diacetonamine exhibites moderatly antimicrobial activities against many species of plant-pathogenic fungus. To enhance the bio-activity, a complex was designed and prepared by the mixture of diacetonamine hydrogen oxalate and copper sulfate. Compared with diacetonamine, the antimicrobial activities of copper complex was increased dramaticaly. Diacetonamine could be prepared from a mixture of mesityl oxide with aqueous ammonia or liquid ammonia(Haeseler, 1925). In this paper, [Cu(C6H13NO)2 (C2H2O4)2] was synthesized by the reaction of CuSO4.5H2O and diacetonamine hydrogen oxalate in ethanol/water and the structure of the resulting complex is presented herein.