organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­heptyl­­idene-N′-(2,4-di­nitro­phenyl)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 10 January 2009; accepted 21 January 2009; online 23 January 2009)

The title compound, C13H16N4O4, is a new hydrazone. An intra­molecular N—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11) and 3.18 (11)°, respectively. Pairs of inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into inversion dimers with R22(10) motifs. The crystal structure is further stabilized by inter­molecular ππ inter­actions, with a benzene centroid-to-centroid distance of 3.6601 (4) Å.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related literature on the applications of hydrazone, see, for example: Niknam et al., (2005[Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236.]); Guillaumont & Nakamura (2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.]); Raj & Kurup (2006[Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 66, 898-903.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N4O4

  • Mr = 292.30

  • Monoclinic, P 21 /n

  • a = 6.9721 (1) Å

  • b = 23.7359 (5) Å

  • c = 8.2274 (2) Å

  • β = 102.351 (1)°

  • V = 1330.03 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.45 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.991

  • 26146 measured reflections

  • 5824 independent reflections

  • 4916 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.04

  • 5824 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.888 (14) 1.947 (14) 2.6225 (9) 131.7 (12)
C2—H2A⋯O3i 0.95 2.52 3.3165 (10) 142
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection and protection of the carbonyl group (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993).

The title compound (Fig. 1) is a new hydrazone. An intramolecular N—H···O hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The nitro groups in the ortho and para positions are almost coplanar with the benzene ring to which they are bound, making dihedral angles of 0.60 (11)° and 3.18 (11)°, respectively. The cycloheptanone ring is puckered with a total puckering amplitude, Q = 0.7820 (8) Å. Pairs of intermolecular C—H···O hydrogen bonds link neighbouring molecules into dimers with R22(10) motifs (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular ππ interactions [Cg1···Cg1(1 - x, -y, 1 - z) = 3.6601 (4) Å, with Cg the centroid of the benzene ring].

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature on the applications of hydrazone, see, for example: Niknam et al., (2005); Guillaumont & Nakamura (2000); Raj & Kurup (2006); Okabe et al. (1993).

Experimental top

The title compound was synthesized based on the reported procedure (Okabe et al. 1993). Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in DMF.

Refinement top

The H atom bound to N1 was located from the difference Fourier map and refined freely, see Table 1. The rest of the H atoms were positioned geometrically and refined in a riding model approximation with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dash lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c-axis showing dimer formation. Intermolecular hydrogen bonds are shown as dashed lines.
N-Cycloheptylidene-N'-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C13H16N4O4F(000) = 616
Mr = 292.30Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9967 reflections
a = 6.9721 (1) Åθ = 2.7–40.2°
b = 23.7359 (5) ŵ = 0.11 mm1
c = 8.2274 (2) ÅT = 100 K
β = 102.351 (1)°Plate, yellow
V = 1330.03 (5) Å30.51 × 0.45 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5824 independent reflections
Radiation source: fine-focus sealed tube4916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.946, Tmax = 0.991k = 3838
26146 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2167P]
where P = (Fo2 + 2Fc2)/3
5824 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H16N4O4V = 1330.03 (5) Å3
Mr = 292.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9721 (1) ŵ = 0.11 mm1
b = 23.7359 (5) ÅT = 100 K
c = 8.2274 (2) Å0.51 × 0.45 × 0.08 mm
β = 102.351 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4916 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.991Rint = 0.026
26146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
5824 reflectionsΔρmin = 0.30 e Å3
194 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71910 (9)0.13041 (2)0.17783 (8)0.02285 (12)
O20.81378 (8)0.04726 (2)0.11828 (8)0.02030 (12)
O30.01157 (8)0.08982 (3)0.49098 (7)0.02059 (12)
O40.17434 (9)0.16037 (2)0.41905 (8)0.02340 (13)
N10.62623 (9)0.04321 (3)0.18111 (8)0.01434 (11)
N20.58494 (9)0.10007 (2)0.19219 (8)0.01495 (11)
N30.70085 (9)0.07900 (3)0.17430 (8)0.01533 (11)
N40.14350 (9)0.10960 (3)0.42854 (8)0.01614 (12)
C10.34898 (10)0.02454 (3)0.30373 (9)0.01400 (12)
H1A0.32280.06380.30540.017*
C20.23044 (10)0.01240 (3)0.36477 (9)0.01428 (12)
H2A0.12310.00120.40770.017*
C30.26847 (10)0.07040 (3)0.36355 (8)0.01365 (12)
C40.42249 (10)0.09135 (3)0.30138 (8)0.01385 (12)
H4A0.44700.13070.30170.017*
C50.54189 (9)0.05386 (3)0.23798 (8)0.01284 (11)
C60.51047 (9)0.00541 (3)0.23793 (8)0.01249 (11)
C70.71332 (10)0.13537 (3)0.16026 (9)0.01369 (12)
C80.90306 (10)0.11873 (3)0.11327 (9)0.01459 (12)
H8A0.87340.10780.00560.018*
H8B0.95490.08490.17840.018*
C91.06529 (10)0.16349 (3)0.13962 (9)0.01612 (13)
H9A1.07780.17960.25240.019*
H9B1.19110.14470.13620.019*
C101.03488 (12)0.21200 (3)0.01374 (11)0.02085 (15)
H10A1.16290.23070.01870.025*
H10B0.99200.19590.09930.025*
C110.88606 (11)0.25661 (3)0.03869 (10)0.01808 (13)
H11A0.93360.27470.14830.022*
H11B0.88010.28600.04750.022*
C120.67896 (11)0.23445 (3)0.03073 (10)0.01820 (14)
H12A0.63590.21310.07410.022*
H12B0.58900.26690.02760.022*
C130.66109 (11)0.19625 (3)0.17764 (10)0.01816 (13)
H13A0.74710.21150.27970.022*
H13B0.52420.19820.19300.022*
H1N10.727 (2)0.0296 (6)0.1432 (17)0.036 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0256 (3)0.0139 (2)0.0313 (3)0.0047 (2)0.0112 (2)0.0015 (2)
O20.0173 (2)0.0201 (2)0.0264 (3)0.00068 (19)0.0112 (2)0.0007 (2)
O30.0189 (2)0.0239 (3)0.0216 (3)0.0013 (2)0.0100 (2)0.0012 (2)
O40.0262 (3)0.0139 (2)0.0317 (3)0.0030 (2)0.0096 (2)0.0025 (2)
N10.0135 (2)0.0119 (2)0.0186 (3)0.00005 (18)0.00577 (19)0.00008 (19)
N20.0142 (2)0.0117 (2)0.0198 (3)0.00064 (18)0.0055 (2)0.0012 (2)
N30.0145 (2)0.0153 (3)0.0166 (3)0.00157 (19)0.00412 (19)0.0017 (2)
N40.0161 (3)0.0163 (3)0.0162 (3)0.0022 (2)0.0037 (2)0.0015 (2)
C10.0132 (3)0.0127 (3)0.0166 (3)0.0010 (2)0.0045 (2)0.0005 (2)
C20.0133 (3)0.0144 (3)0.0158 (3)0.0007 (2)0.0045 (2)0.0008 (2)
C30.0139 (3)0.0132 (3)0.0141 (3)0.0011 (2)0.0036 (2)0.0009 (2)
C40.0145 (3)0.0128 (3)0.0140 (3)0.0004 (2)0.0025 (2)0.0003 (2)
C50.0122 (3)0.0128 (3)0.0138 (3)0.0008 (2)0.0036 (2)0.0014 (2)
C60.0119 (3)0.0127 (3)0.0127 (3)0.00011 (19)0.00235 (19)0.0000 (2)
C70.0131 (3)0.0125 (3)0.0160 (3)0.0006 (2)0.0043 (2)0.0009 (2)
C80.0133 (3)0.0130 (3)0.0184 (3)0.0002 (2)0.0054 (2)0.0004 (2)
C90.0125 (3)0.0149 (3)0.0210 (3)0.0004 (2)0.0037 (2)0.0026 (2)
C100.0200 (3)0.0173 (3)0.0284 (4)0.0029 (2)0.0121 (3)0.0069 (3)
C110.0199 (3)0.0137 (3)0.0218 (3)0.0009 (2)0.0071 (2)0.0032 (2)
C120.0170 (3)0.0142 (3)0.0233 (3)0.0029 (2)0.0040 (2)0.0029 (2)
C130.0191 (3)0.0128 (3)0.0256 (3)0.0016 (2)0.0115 (3)0.0003 (2)
Geometric parameters (Å, º) top
O1—N31.2265 (8)C7—C131.5044 (10)
O2—N31.2471 (8)C7—C81.5080 (10)
O3—N41.2380 (9)C8—C91.5330 (10)
O4—N41.2296 (8)C8—H8A0.9900
N1—C61.3551 (9)C8—H8B0.9900
N1—N21.3871 (8)C9—C101.5328 (10)
N1—H1N10.887 (14)C9—H9A0.9900
N2—C71.2934 (9)C9—H9B0.9900
N3—C51.4517 (9)C10—C111.5269 (11)
N4—C31.4525 (9)C10—H10A0.9900
C1—C21.3717 (10)C10—H10B0.9900
C1—C61.4241 (10)C11—C121.5249 (11)
C1—H1A0.9500C11—H11A0.9900
C2—C31.4026 (10)C11—H11B0.9900
C2—H2A0.9500C12—C131.5373 (11)
C3—C41.3772 (10)C12—H12A0.9900
C4—C51.3938 (10)C12—H12B0.9900
C4—H4A0.9500C13—H13A0.9900
C5—C61.4237 (9)C13—H13B0.9900
C6—N1—N2118.31 (6)C7—C8—H8B108.2
C6—N1—H1N1117.1 (9)C9—C8—H8B108.2
N2—N1—H1N1124.6 (9)H8A—C8—H8B107.4
C7—N2—N1117.04 (6)C10—C9—C8115.71 (6)
O1—N3—O2122.64 (6)C10—C9—H9A108.4
O1—N3—C5118.93 (6)C8—C9—H9A108.4
O2—N3—C5118.43 (6)C10—C9—H9B108.4
O4—N4—O3123.61 (7)C8—C9—H9B108.4
O4—N4—C3118.53 (6)H9A—C9—H9B107.4
O3—N4—C3117.86 (6)C11—C10—C9115.46 (6)
C2—C1—C6121.51 (6)C11—C10—H10A108.4
C2—C1—H1A119.2C9—C10—H10A108.4
C6—C1—H1A119.2C11—C10—H10B108.4
C1—C2—C3119.69 (6)C9—C10—H10B108.4
C1—C2—H2A120.2H10A—C10—H10B107.5
C3—C2—H2A120.2C12—C11—C10114.80 (6)
C4—C3—C2121.37 (6)C12—C11—H11A108.6
C4—C3—N4118.83 (6)C10—C11—H11A108.6
C2—C3—N4119.79 (6)C12—C11—H11B108.6
C3—C4—C5118.95 (6)C10—C11—H11B108.6
C3—C4—H4A120.5H11A—C11—H11B107.5
C5—C4—H4A120.5C11—C12—C13113.89 (6)
C4—C5—C6121.79 (6)C11—C12—H12A108.8
C4—C5—N3115.84 (6)C13—C12—H12A108.8
C6—C5—N3122.37 (6)C11—C12—H12B108.8
N1—C6—C5123.46 (6)C13—C12—H12B108.8
N1—C6—C1119.84 (6)H12A—C12—H12B107.7
C5—C6—C1116.69 (6)C7—C13—C12115.46 (6)
N2—C7—C13114.26 (6)C7—C13—H13A108.4
N2—C7—C8124.44 (6)C12—C13—H13A108.4
C13—C7—C8121.29 (6)C7—C13—H13B108.4
C7—C8—C9116.32 (6)C12—C13—H13B108.4
C7—C8—H8A108.2H13A—C13—H13B107.5
C9—C8—H8A108.2
C6—N1—N2—C7170.12 (6)C4—C5—C6—N1178.35 (6)
C6—C1—C2—C30.28 (10)N3—C5—C6—N10.87 (10)
C1—C2—C3—C40.32 (10)C4—C5—C6—C10.89 (9)
C1—C2—C3—N4179.83 (6)N3—C5—C6—C1179.89 (6)
O4—N4—C3—C43.17 (10)C2—C1—C6—N1178.97 (6)
O3—N4—C3—C4176.68 (6)C2—C1—C6—C50.30 (10)
O4—N4—C3—C2176.69 (7)N1—N2—C7—C13178.94 (6)
O3—N4—C3—C23.46 (10)N1—N2—C7—C80.34 (10)
C2—C3—C4—C50.26 (10)N2—C7—C8—C9159.23 (7)
N4—C3—C4—C5179.60 (6)C13—C7—C8—C919.27 (10)
C3—C4—C5—C60.88 (10)C7—C8—C9—C1074.34 (8)
C3—C4—C5—N3179.85 (6)C8—C9—C10—C1176.57 (9)
O1—N3—C5—C40.89 (9)C9—C10—C11—C1259.37 (9)
O2—N3—C5—C4179.00 (6)C10—C11—C12—C1368.70 (9)
O1—N3—C5—C6179.84 (6)N2—C7—C13—C12131.11 (7)
O2—N3—C5—C60.26 (10)C8—C7—C13—C1250.25 (9)
N2—N1—C6—C5177.98 (6)C11—C12—C13—C784.10 (8)
N2—N1—C6—C11.24 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.888 (14)1.947 (14)2.6225 (9)131.7 (12)
C2—H2A···O3i0.952.523.3165 (10)142
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H16N4O4
Mr292.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.9721 (1), 23.7359 (5), 8.2274 (2)
β (°) 102.351 (1)
V3)1330.03 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.51 × 0.45 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
26146, 5824, 4916
Rint0.026
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.04
No. of reflections5824
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.888 (14)1.947 (14)2.6225 (9)131.7 (12)
C2—H2A···O3i0.95002.52003.3165 (10)142.00
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationNiknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231–2236.  Web of Science CrossRef CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds