metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ethyl­enedi­amine-κ2N,N′)bis­­[3-(2-pyridyl)-5-(4-pyrid­yl)-1,2,4-triazolato-κ2N2,N3]zinc(II) methanol solvate dihydrate

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 4 December 2008; accepted 14 January 2009; online 17 January 2009)

The asymmetric unit of the title compound, [Zn(C12H8N5)2(C2H8N2)]·CH3OH·2H2O, contains a ZnII cation, octahedrally coordinated by two 3-(2-pyrid­yl)-5-(4-pyrid­yl)-1,2,4-triazolate anions, a chelating ethane-1,2-diamine mol­ecule, a methanol solvent mol­ecule, and two crystal water mol­ecules. In the crystal packing, complex mol­ecules are linked by hydrogen bonds into a two-dimensional layer.

Related literature

For related structures, see: Wang et al. (2005[Wang, Y.-T., Tong, M.-L., Fan, H.-H., Wang, H.-Z. & Chen, X.-M. (2005). Dalton Trans. pp. 424-426.]). For general background, see: Kesanli & Lin (2003[Kesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H8N5)2(C2H8N2)]·CH4O·2H2O

  • Mr = 638.02

  • Triclinic, [P \overline 1]

  • a = 8.3323 (8) Å

  • b = 13.0268 (12) Å

  • c = 14.9444 (14) Å

  • α = 66.404 (2)°

  • β = 79.751 (2)°

  • γ = 81.437 (2)°

  • V = 1457.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.16 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.870

  • 11395 measured reflections

  • 5643 independent reflections

  • 4532 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.130

  • S = 1.04

  • 5643 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N7 2.096 (3)
Zn1—N2 2.103 (2)
Zn1—N11 2.133 (3)
Zn1—N12 2.148 (3)
Zn1—N1 2.269 (3)
Zn1—N6 2.293 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯O1Wi 0.90 2.27 3.166 (4) 172
N11—H11C⋯O2Wii 0.90 2.17 3.034 (4) 161
N12—H12B⋯N5iii 0.90 2.54 3.321 (4) 146
N12—H12C⋯O1W 0.90 2.45 3.331 (4) 165
O1—H1B⋯N4iv 0.90 2.02 2.897 (4) 163
O1W—H1WA⋯N3v 0.85 2.04 2.887 (4) 171
O1W—H1WB⋯N8 0.85 2.09 2.859 (4) 150
O2W—H2WA⋯O1 0.85 1.94 2.778 (4) 169
O2W—H2WB⋯O1W 0.85 2.00 2.787 (4) 153
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there has been significant interest in the rational design and synthesis of chiral coordination polymers due to their potential functions, such as enantioselective separations and catalysis, which could be obtained by using chiral and achiral ligands (Kesanli et al. 2003; Wang et al. 2005). The use of achiral ligands is more attractive since usually such ligands are easier to be generated. Asymmetric ligands, as achiral ligands, have been widely used to construct those non-centrosymmetrical polymers. Unfortunately, here, we synthesed a centrosymmetrical complex Zn(C12H8N5)2(C2H8N2).CH3OH.2H2O, with an asymmetric 3-(2-pyridyl)-5-(4-pyridyl)-4H-1,2,4-triazole ligand.

The asymmetric unit of the title compound, contains one ZnII cation, two 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolato anions, one chelating ethane-1,2-diamine, methanol solvate and two crystal water molecules. The complex is mononuclear with ZnII in a distorted octahedral geometry of two chelating triazolato anions, and one chelating ethane-1,2-diamine ligand. Each triazolato group acts as a bidentate chelating ligand whereas the N atom of 4-pyridyl group does not take part in coordination (Table 1and Fig. 1). In the crystal, the complex molecules are linked by N—H···O, O—H···N and O—H···O hydrogen bonds into a two-dimensional layer (Table 2 and Fig. 2).

Related literature top

For related structures, see: Wang et al. (2005). For general background, see: Kesanli & Lin (2003).

Experimental top

A mixture of 3-(2-pyridyl)-5-(4-pyridyl)-4H-1,2,4-triazole (0.0446 g, 0.2 mmol), ZnSO4.7 H2O (0.0288 g, 0.1 mmol), ethane-1,2-diamine (0.1 ml), methanol (2 ml) and water (2 ml) was stirred for 0.5 h at room temperature, and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 2 weeks, colourless needle crystals were obtained in 34% yield (0.0217 g) based on ZnII.

Refinement top

H atoms bonded to N and O atoms were located in a difference map with the distances of N—H = 0.90 and O—H = 0.85–0.90 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of ZnII with the 30% displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional hydrogen bond network of the title compound.
(Ethylenediamine-κ2N,N')bis[3-(2-pyridyl)-5-(4-pyridyl)-1,2,4- triazolato-κ2N2,N3]zinc(II) methanol solvate dihydrate top
Crystal data top
[Zn(C12H8N5)2(C2H8N2)]·CH3O·2H2OZ = 2
Mr = 638.02F(000) = 664
Triclinic, P1Dx = 1.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3323 (8) ÅCell parameters from 783 reflections
b = 13.0268 (12) Åθ = 2.5–28.0°
c = 14.9444 (14) ŵ = 0.90 mm1
α = 66.404 (2)°T = 293 K
β = 79.751 (2)°Needle, colourless
γ = 81.437 (2)°0.25 × 0.22 × 0.16 mm
V = 1457.3 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
5643 independent reflections
Radiation source: fine-focus sealed tube4532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.807, Tmax = 0.870k = 1616
11395 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.853P]
where P = (Fo2 + 2Fc2)/3
5643 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Zn(C12H8N5)2(C2H8N2)]·CH3O·2H2Oγ = 81.437 (2)°
Mr = 638.02V = 1457.3 (2) Å3
Triclinic, P1Z = 2
a = 8.3323 (8) ÅMo Kα radiation
b = 13.0268 (12) ŵ = 0.90 mm1
c = 14.9444 (14) ÅT = 293 K
α = 66.404 (2)°0.25 × 0.22 × 0.16 mm
β = 79.751 (2)°
Data collection top
Bruker APEX CCD
diffractometer
5643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4532 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.870Rint = 0.030
11395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
5643 reflectionsΔρmin = 0.56 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71857 (5)0.78434 (3)0.29062 (3)0.03871 (14)
C10.4382 (5)0.9641 (3)0.1713 (3)0.0551 (10)
H1A0.40270.90230.16640.066*
C20.3536 (5)1.0670 (4)0.1313 (3)0.0636 (11)
H2A0.26371.07480.09930.076*
C30.4042 (5)1.1584 (3)0.1393 (3)0.0609 (11)
H3A0.34921.22930.11270.073*
C40.5377 (4)1.1433 (3)0.1875 (3)0.0477 (9)
H4A0.57291.20360.19490.057*
C50.6183 (4)1.0380 (3)0.2245 (2)0.0357 (7)
C60.7672 (4)1.0124 (3)0.2716 (2)0.0350 (7)
C70.9746 (4)1.0178 (3)0.3288 (2)0.0364 (7)
C81.0995 (4)1.0544 (3)0.3656 (2)0.0378 (7)
C91.1963 (4)0.9778 (3)0.4322 (3)0.0456 (8)
H9A1.18660.90120.45340.055*
C101.3081 (4)1.0159 (3)0.4672 (3)0.0549 (10)
H10A1.37230.96270.51230.066*
C111.2366 (5)1.1968 (3)0.3747 (3)0.0597 (11)
H11A1.25101.27280.35310.072*
C121.1207 (5)1.1674 (3)0.3365 (3)0.0512 (9)
H12A1.05751.22230.29180.061*
C131.0318 (4)0.8471 (3)0.1141 (3)0.0522 (9)
H13A1.06590.88440.14820.063*
C141.1280 (5)0.8449 (3)0.0311 (3)0.0601 (11)
H14A1.22430.88070.00880.072*
C151.0810 (5)0.7890 (3)0.0194 (3)0.0552 (10)
H15A1.14510.78590.07610.066*
C160.9368 (4)0.7374 (3)0.0155 (3)0.0447 (8)
H16A0.90260.69800.01660.054*
C170.8445 (4)0.7457 (3)0.0990 (2)0.0372 (7)
C180.6844 (4)0.6996 (3)0.1399 (2)0.0360 (7)
C190.4638 (4)0.6307 (3)0.1630 (2)0.0370 (7)
C200.3338 (4)0.5731 (3)0.1523 (3)0.0389 (8)
C210.2038 (4)0.5364 (3)0.2252 (3)0.0484 (9)
H21A0.19380.54950.28280.058*
C220.0886 (5)0.4799 (3)0.2112 (3)0.0583 (10)
H22A0.00120.45660.26080.070*
C230.2181 (5)0.4939 (4)0.0620 (3)0.0633 (11)
H23A0.22450.48000.00510.076*
C240.3379 (5)0.5521 (3)0.0684 (3)0.0527 (10)
H24A0.42120.57710.01640.063*
C250.8006 (5)0.6203 (3)0.4815 (3)0.0540 (10)
H25A0.84310.67270.50080.065*
H25B0.83770.54460.52300.065*
C260.6162 (5)0.6348 (3)0.4945 (3)0.0562 (10)
H26A0.57340.57960.47890.067*
H26B0.57500.62390.56230.067*
N10.5690 (3)0.9484 (2)0.2168 (2)0.0425 (7)
N20.8401 (3)0.9090 (2)0.3005 (2)0.0379 (6)
N30.9767 (3)0.9114 (2)0.3379 (2)0.0391 (6)
N40.8461 (3)1.0852 (2)0.2877 (2)0.0384 (6)
N51.3297 (4)1.1242 (3)0.4403 (3)0.0584 (9)
N60.8917 (3)0.7990 (2)0.1493 (2)0.0425 (7)
N70.6034 (3)0.7089 (2)0.2217 (2)0.0392 (6)
N80.4580 (3)0.6639 (2)0.2376 (2)0.0405 (6)
N90.6030 (3)0.6513 (2)0.0994 (2)0.0411 (7)
N100.0943 (4)0.4566 (3)0.1321 (3)0.0618 (9)
N110.8616 (3)0.6409 (2)0.3777 (2)0.0418 (7)
H11B0.96440.65570.37610.050*
H11C0.83630.57590.37790.050*
N120.5630 (3)0.7487 (2)0.4287 (2)0.0466 (7)
H12B0.54350.78940.46660.056*
H12C0.45970.75110.41730.056*
C270.3055 (11)0.6293 (5)0.7695 (7)0.204 (5)
H27A0.21890.64510.81510.245*
H27B0.40910.62540.79080.245*
H27C0.29260.55870.76660.245*
O10.2993 (5)0.7199 (3)0.6702 (3)0.1036 (12)
H1B0.26980.78790.67330.124*
O1W0.2078 (3)0.7151 (2)0.37517 (18)0.0555 (7)
H1WA0.14890.77720.36150.067*
H1WB0.25870.71790.31970.067*
O2W0.1847 (4)0.6019 (2)0.5789 (2)0.0810 (10)
H2WA0.22780.63000.61050.097*
H2WB0.19180.61430.51810.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0371 (2)0.0371 (2)0.0476 (2)0.00668 (16)0.01032 (17)0.01898 (18)
C10.052 (2)0.050 (2)0.069 (3)0.0071 (18)0.028 (2)0.020 (2)
C20.054 (2)0.061 (3)0.076 (3)0.001 (2)0.039 (2)0.016 (2)
C30.053 (2)0.050 (2)0.074 (3)0.0077 (19)0.027 (2)0.014 (2)
C40.046 (2)0.039 (2)0.059 (2)0.0010 (16)0.0134 (18)0.0178 (17)
C50.0318 (17)0.0397 (18)0.0380 (17)0.0050 (14)0.0062 (14)0.0158 (15)
C60.0333 (17)0.0350 (18)0.0391 (17)0.0033 (14)0.0081 (14)0.0149 (14)
C70.0344 (18)0.0375 (18)0.0420 (18)0.0040 (14)0.0065 (14)0.0192 (15)
C80.0310 (17)0.0443 (19)0.0476 (19)0.0059 (14)0.0057 (15)0.0262 (16)
C90.0368 (19)0.047 (2)0.061 (2)0.0030 (16)0.0128 (17)0.0254 (18)
C100.042 (2)0.064 (3)0.068 (3)0.0016 (19)0.0218 (19)0.031 (2)
C110.060 (3)0.051 (2)0.083 (3)0.013 (2)0.019 (2)0.035 (2)
C120.053 (2)0.043 (2)0.067 (2)0.0042 (17)0.0212 (19)0.0254 (19)
C130.044 (2)0.052 (2)0.064 (2)0.0126 (18)0.0050 (19)0.024 (2)
C140.041 (2)0.063 (3)0.070 (3)0.0196 (19)0.003 (2)0.019 (2)
C150.043 (2)0.066 (3)0.055 (2)0.0031 (19)0.0010 (18)0.025 (2)
C160.0366 (19)0.053 (2)0.047 (2)0.0043 (16)0.0047 (15)0.0214 (17)
C170.0324 (17)0.0382 (18)0.0387 (17)0.0017 (14)0.0086 (14)0.0112 (15)
C180.0346 (17)0.0354 (18)0.0393 (17)0.0014 (14)0.0034 (14)0.0168 (15)
C190.0341 (18)0.0350 (18)0.0436 (18)0.0027 (14)0.0032 (15)0.0177 (15)
C200.0337 (18)0.0342 (18)0.052 (2)0.0006 (14)0.0074 (15)0.0208 (16)
C210.045 (2)0.053 (2)0.052 (2)0.0113 (17)0.0020 (17)0.0247 (18)
C220.047 (2)0.058 (2)0.070 (3)0.0210 (19)0.003 (2)0.023 (2)
C230.064 (3)0.069 (3)0.076 (3)0.016 (2)0.006 (2)0.046 (2)
C240.046 (2)0.062 (2)0.064 (2)0.0148 (19)0.0027 (18)0.039 (2)
C250.055 (2)0.054 (2)0.050 (2)0.0056 (19)0.0161 (18)0.0174 (19)
C260.054 (2)0.059 (3)0.053 (2)0.014 (2)0.0035 (19)0.019 (2)
N10.0390 (16)0.0405 (16)0.0522 (17)0.0042 (13)0.0187 (13)0.0166 (14)
N20.0332 (15)0.0340 (15)0.0532 (17)0.0018 (12)0.0155 (13)0.0199 (13)
N30.0335 (15)0.0385 (16)0.0516 (17)0.0014 (12)0.0130 (13)0.0212 (13)
N40.0373 (15)0.0340 (15)0.0491 (16)0.0019 (12)0.0140 (13)0.0181 (13)
N50.0494 (19)0.066 (2)0.076 (2)0.0097 (17)0.0190 (17)0.0386 (19)
N60.0380 (16)0.0419 (16)0.0487 (17)0.0085 (13)0.0056 (13)0.0169 (14)
N70.0336 (15)0.0425 (16)0.0463 (16)0.0072 (12)0.0037 (12)0.0213 (13)
N80.0341 (15)0.0464 (17)0.0470 (16)0.0084 (13)0.0008 (12)0.0252 (14)
N90.0357 (15)0.0474 (17)0.0475 (16)0.0072 (13)0.0029 (13)0.0254 (14)
N100.054 (2)0.061 (2)0.084 (2)0.0211 (17)0.0054 (19)0.038 (2)
N110.0400 (16)0.0351 (15)0.0536 (17)0.0051 (12)0.0088 (13)0.0188 (13)
N120.0365 (16)0.0554 (19)0.0568 (18)0.0042 (14)0.0047 (14)0.0313 (16)
C270.250 (10)0.067 (4)0.335 (13)0.000 (5)0.219 (10)0.048 (6)
O10.139 (3)0.066 (2)0.123 (3)0.013 (2)0.044 (3)0.051 (2)
O1W0.0514 (16)0.0555 (16)0.0523 (15)0.0069 (12)0.0001 (12)0.0199 (13)
O2W0.119 (3)0.068 (2)0.0630 (19)0.0367 (19)0.0044 (18)0.0249 (16)
Geometric parameters (Å, º) top
Zn1—N72.096 (3)C16—H16A0.9300
Zn1—N22.103 (2)C17—N61.343 (4)
Zn1—N112.133 (3)C17—C181.473 (4)
Zn1—N122.148 (3)C18—N71.329 (4)
Zn1—N12.269 (3)C18—N91.341 (4)
Zn1—N62.293 (3)C19—N81.340 (4)
C1—N11.334 (4)C19—N91.347 (4)
C1—C21.370 (5)C19—C201.470 (4)
C1—H1A0.9300C20—C241.379 (5)
C2—C31.376 (6)C20—C211.381 (5)
C2—H2A0.9300C21—C221.382 (5)
C3—C41.379 (5)C21—H21A0.9300
C3—H3A0.9300C22—N101.324 (5)
C4—C51.374 (5)C22—H22A0.9300
C4—H4A0.9300C23—N101.325 (5)
C5—N11.347 (4)C23—C241.377 (5)
C5—C61.465 (4)C23—H23A0.9300
C6—N21.324 (4)C24—H24A0.9300
C6—N41.347 (4)C25—N111.470 (4)
C7—N31.335 (4)C25—C261.507 (5)
C7—N41.348 (4)C25—H25A0.9700
C7—C81.475 (4)C25—H25B0.9700
C8—C91.374 (5)C26—N121.468 (5)
C8—C121.387 (5)C26—H26A0.9700
C9—C101.380 (5)C26—H26B0.9700
C9—H9A0.9300N2—N31.364 (3)
C10—N51.335 (5)N7—N81.366 (4)
C10—H10A0.9300N11—H11B0.8999
C11—N51.330 (5)N11—H11C0.9001
C11—C121.374 (5)N12—H12B0.9006
C11—H11A0.9300N12—H12C0.8999
C12—H12A0.9300C27—O11.485 (8)
C13—N61.330 (4)C27—H27A0.9600
C13—C141.361 (5)C27—H27B0.9600
C13—H13A0.9300C27—H27C0.9600
C14—C151.372 (5)O1—H1B0.9002
C14—H14A0.9300O1W—H1WA0.8500
C15—C161.379 (5)O1W—H1WB0.8506
C15—H15A0.9300O2W—H2WA0.8501
C16—C171.379 (5)O2W—H2WB0.8506
N7—Zn1—N2156.47 (11)N8—C19—N9114.0 (3)
N7—Zn1—N1199.48 (10)N8—C19—C20123.6 (3)
N2—Zn1—N1198.05 (10)N9—C19—C20122.4 (3)
N7—Zn1—N12101.58 (10)C24—C20—C21116.9 (3)
N2—Zn1—N1296.28 (11)C24—C20—C19121.0 (3)
N11—Zn1—N1281.99 (11)C21—C20—C19122.2 (3)
N7—Zn1—N189.05 (10)C20—C21—C22119.0 (3)
N2—Zn1—N174.90 (10)C20—C21—H21A120.5
N11—Zn1—N1170.61 (10)C22—C21—H21A120.5
N12—Zn1—N192.50 (11)N10—C22—C21124.5 (4)
N7—Zn1—N675.35 (10)N10—C22—H22A117.7
N2—Zn1—N688.45 (10)C21—C22—H22A117.7
N11—Zn1—N692.21 (10)N10—C23—C24124.0 (4)
N12—Zn1—N6172.96 (10)N10—C23—H23A118.0
N1—Zn1—N693.77 (10)C24—C23—H23A118.0
N1—C1—C2123.1 (3)C23—C24—C20119.8 (4)
N1—C1—H1A118.5C23—C24—H24A120.1
C2—C1—H1A118.5C20—C24—H24A120.1
C1—C2—C3118.7 (3)N11—C25—C26109.3 (3)
C1—C2—H2A120.6N11—C25—H25A109.8
C3—C2—H2A120.6C26—C25—H25A109.8
C2—C3—C4118.9 (4)N11—C25—H25B109.8
C2—C3—H3A120.5C26—C25—H25B109.8
C4—C3—H3A120.5H25A—C25—H25B108.3
C5—C4—C3119.2 (3)N12—C26—C25108.8 (3)
C5—C4—H4A120.4N12—C26—H26A109.9
C3—C4—H4A120.4C25—C26—H26A109.9
N1—C5—C4122.0 (3)N12—C26—H26B109.9
N1—C5—C6113.5 (3)C25—C26—H26B109.9
C4—C5—C6124.5 (3)H26A—C26—H26B108.3
N2—C6—N4113.5 (3)C1—N1—C5118.1 (3)
N2—C6—C5119.7 (3)C1—N1—Zn1127.8 (2)
N4—C6—C5126.8 (3)C5—N1—Zn1114.1 (2)
N3—C7—N4114.2 (3)C6—N2—N3106.6 (2)
N3—C7—C8121.6 (3)C6—N2—Zn1117.1 (2)
N4—C7—C8124.1 (3)N3—N2—Zn1136.0 (2)
C9—C8—C12117.5 (3)C7—N3—N2104.7 (3)
C9—C8—C7121.1 (3)C6—N4—C7101.1 (3)
C12—C8—C7121.4 (3)C11—N5—C10115.7 (3)
C8—C9—C10119.3 (3)C13—N6—C17117.3 (3)
C8—C9—H9A120.4C13—N6—Zn1129.4 (2)
C10—C9—H9A120.4C17—N6—Zn1113.2 (2)
N5—C10—C9124.1 (4)C18—N7—N8106.3 (2)
N5—C10—H10A117.9C18—N7—Zn1117.0 (2)
C9—C10—H10A117.9N8—N7—Zn1136.7 (2)
N5—C11—C12124.6 (4)C19—N8—N7104.7 (2)
N5—C11—H11A117.7C18—N9—C19101.3 (3)
C12—C11—H11A117.7C22—N10—C23115.9 (3)
C11—C12—C8118.9 (4)C25—N11—Zn1107.1 (2)
C11—C12—H12A120.6C25—N11—H11B99.2
C8—C12—H12A120.6Zn1—N11—H11B112.6
N6—C13—C14123.6 (4)C25—N11—H11C97.5
N6—C13—H13A118.2Zn1—N11—H11C113.1
C14—C13—H13A118.2H11B—N11—H11C123.5
C13—C14—C15119.1 (4)C26—N12—Zn1107.1 (2)
C13—C14—H14A120.5C26—N12—H12B104.9
C15—C14—H14A120.5Zn1—N12—H12B127.8
C14—C15—C16118.8 (4)C26—N12—H12C110.1
C14—C15—H15A120.6Zn1—N12—H12C107.7
C16—C15—H15A120.6H12B—N12—H12C98.5
C17—C16—C15118.5 (3)O1—C27—H27A109.5
C17—C16—H16A120.7O1—C27—H27B109.5
C15—C16—H16A120.7H27A—C27—H27B109.5
N6—C17—C16122.7 (3)O1—C27—H27C109.5
N6—C17—C18113.9 (3)H27A—C27—H27C109.5
C16—C17—C18123.4 (3)H27B—C27—H27C109.5
N7—C18—N9113.8 (3)C27—O1—H1B112.0
N7—C18—C17120.1 (3)H1WA—O1W—H1WB104.0
N9—C18—C17126.0 (3)H2WA—O2W—H2WB133.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O1Wi0.902.273.166 (4)172
N11—H11C···O2Wii0.902.173.034 (4)161
N12—H12B···N5iii0.902.543.321 (4)146
N12—H12C···O1W0.902.453.331 (4)165
O1—H1B···N4iv0.902.022.897 (4)163
O1W—H1WA···N3v0.852.042.887 (4)171
O1W—H1WB···N80.852.092.859 (4)150
O2W—H2WA···O10.851.942.778 (4)169
O2W—H2WB···O1W0.852.002.787 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H8N5)2(C2H8N2)]·CH3O·2H2O
Mr638.02
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3323 (8), 13.0268 (12), 14.9444 (14)
α, β, γ (°)66.404 (2), 79.751 (2), 81.437 (2)
V3)1457.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.25 × 0.22 × 0.16
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.807, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
11395, 5643, 4532
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.04
No. of reflections5643
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N72.096 (3)Zn1—N122.148 (3)
Zn1—N22.103 (2)Zn1—N12.269 (3)
Zn1—N112.133 (3)Zn1—N62.293 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O1Wi0.902.273.166 (4)172.0
N11—H11C···O2Wii0.902.173.034 (4)161.3
N12—H12B···N5iii0.902.543.321 (4)145.6
N12—H12C···O1W0.902.453.331 (4)164.9
O1—H1B···N4iv0.902.022.897 (4)163.0
O1W—H1WA···N3v0.852.042.887 (4)171.0
O1W—H1WB···N80.852.092.859 (4)149.8
O2W—H2WA···O10.851.942.778 (4)169.0
O2W—H2WB···O1W0.852.002.787 (4)153.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x1, y, z.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for a financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305–326.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tong, M.-L., Fan, H.-H., Wang, H.-Z. & Chen, X.-M. (2005). Dalton Trans. pp. 424–426.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds