metal-organic compounds
trans-Bis(acetonitrile-κN)tetraaquacobalt(II) tetrachloridocobaltate(II)
aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl
In the title complex, [Co(CH3CN)2(H2O)4][CoCl4], the CoII ions are octahedrally coordinated in the cation, with trans-disposed acetonitrile ligands, and tetrahedrally coordinated in the anion. An extensive network of O—H(water)⋯Cl hydrogen bonds between cations and anions connects the ions into a three-dimensional network. The Co—Cl distances correlate with the number of hydrogen bonds accepted by the Cl atoms.
Related literature
For background to our studies on new helical metal complexes, see: Stefankiewicz et al. (2008). There are only few examples of other bis(acetonitrile)tetraaqua complexes, these are mainly cobalt complexes: bis(4,7-phenantroline) diperchlorate (Beauchamp & Loeb, 2002), dinitrate (Kopylovich et al., 2001; Barnett et al., 2002), dichloride monohydrate (Malkov et al., 2003) and dibromide (Depree et al., 2000), and one nickel complex, dibromide, has been reported (Assoumatine & Stoeckli-Evans, 2001). All these compounds have 1:2 composition. For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809000750/kp2200sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000750/kp2200Isup2.hkl
The complex was prepared as described previously (Stefankiewicz et al., 2008). The main product of this reaction was complex [Co(C22H18N4)(H2O)Cl](BF4).
Hydrogen atoms were located geometrically, in case of the water molecules on the basis of potential hydrogen bonds, and refined as the 'riding model' with Uiso's set at 1.3 times Ueq's of appropriate oxygen atoms. The relatively large values of residual electron density is probably an effect of unresolved
the efforts on describing this did not improve the model.The
(0.28 (4)) could suggest the possibility of a wrong however, the of the inverted structure led to the higher values of the R-parameters (R(F) of 6.66% for observed and 7.13% for all reflections, wR2 is 16.35%) as well as for which is 0.65 (4) in this case.Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Anisotropic ellipsoid representation of compound I with atom labelling scheme (Siemens, 1989). The ellipsoids are drawn at the 50% probability level, hydrogen atoms are depicted as spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines. | |
Fig. 2. The crystal packing as seen approximately along a direction (Macrae et al., 2008). Hydrogen bonds are depicted as dashed lines. |
[Co(C2H3N)2(H2O)4][CoCl4] | F(000) = 824 |
Mr = 413.83 | Dx = 1.759 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5736 reflections |
a = 7.0569 (4) Å | θ = 4–22° |
b = 12.3209 (8) Å | µ = 2.81 mm−1 |
c = 17.9698 (12) Å | T = 170 K |
V = 1562.43 (17) Å3 | Prism, blue |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
Kuma KM-4-CCD diffractometer | 2619 independent reflections |
Radiation source: fine-focus sealed tube | 2386 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −8→8 |
Tmin = 0.52, Tmax = 0.57 | k = −14→14 |
6778 measured reflections | l = −19→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.131P)2 + 0.4597P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2619 reflections | Δρmax = 3.41 e Å−3 |
145 parameters | Δρmin = −0.58 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1006 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.28 (4) |
[Co(C2H3N)2(H2O)4][CoCl4] | V = 1562.43 (17) Å3 |
Mr = 413.83 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0569 (4) Å | µ = 2.81 mm−1 |
b = 12.3209 (8) Å | T = 170 K |
c = 17.9698 (12) Å | 0.2 × 0.2 × 0.2 mm |
Kuma KM-4-CCD diffractometer | 2619 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2386 reflections with I > 2σ(I) |
Tmin = 0.52, Tmax = 0.57 | Rint = 0.027 |
6778 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.164 | Δρmax = 3.41 e Å−3 |
S = 1.03 | Δρmin = −0.58 e Å−3 |
2619 reflections | Absolute structure: Flack (1983), 1006 Friedel pairs |
145 parameters | Absolute structure parameter: 0.28 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.75813 (15) | 0.49124 (7) | 0.11221 (5) | 0.0234 (3) | |
O1W | 0.6109 (8) | 0.4648 (5) | 0.2112 (3) | 0.0336 (13) | |
H1WA | 0.6469 | 0.4571 | 0.2590 | 0.044* | |
H1WB | 0.4977 | 0.4985 | 0.2113 | 0.044* | |
O2W | 0.6278 (8) | 0.3582 (4) | 0.0632 (3) | 0.0369 (14) | |
H2WA | 0.6344 | 0.2855 | 0.0584 | 0.048* | |
H2WB | 0.5070 | 0.3775 | 0.0540 | 0.048* | |
O3W | 0.8873 (8) | 0.6277 (4) | 0.1558 (3) | 0.0363 (14) | |
H3WA | 1.0017 | 0.6448 | 0.1747 | 0.047* | |
H3WB | 0.8287 | 0.6903 | 0.1440 | 0.047* | |
O4W | 0.8975 (7) | 0.5205 (4) | 0.0117 (3) | 0.0336 (13) | |
H4WA | 0.9898 | 0.4702 | 0.0091 | 0.044* | |
H4WB | 0.8595 | 0.5339 | −0.0353 | 0.044* | |
N11 | 0.9845 (8) | 0.3935 (5) | 0.1465 (3) | 0.0262 (13) | |
C12 | 1.1077 (12) | 0.3375 (6) | 0.1583 (4) | 0.0299 (18) | |
C13 | 1.2670 (12) | 0.2646 (6) | 0.1711 (5) | 0.0353 (18) | |
H13A | 1.3462 | 0.2612 | 0.1263 | 0.046* | |
H13B | 1.2192 | 0.1918 | 0.1828 | 0.046* | |
H13C | 1.3428 | 0.2916 | 0.2130 | 0.046* | |
N21 | 0.5299 (9) | 0.5881 (5) | 0.0764 (4) | 0.0274 (14) | |
C22 | 0.4087 (10) | 0.6463 (6) | 0.0660 (4) | 0.0229 (15) | |
C23 | 0.2587 (12) | 0.7229 (6) | 0.0533 (5) | 0.0389 (19) | |
H23A | 0.2599 | 0.7775 | 0.0930 | 0.051* | |
H23B | 0.1367 | 0.6848 | 0.0536 | 0.051* | |
H23C | 0.2767 | 0.7587 | 0.0051 | 0.051* | |
Co2 | 0.16403 (13) | 0.51515 (7) | 0.35869 (5) | 0.0222 (3) | |
Cl1 | 0.3220 (3) | 0.35571 (15) | 0.36207 (13) | 0.0393 (5) | |
Cl2 | −0.1531 (2) | 0.48179 (16) | 0.36180 (10) | 0.0339 (5) | |
Cl3 | 0.2520 (3) | 0.61534 (15) | 0.25785 (10) | 0.0327 (5) | |
Cl4 | 0.2382 (3) | 0.61707 (13) | 0.46316 (9) | 0.0278 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0234 (5) | 0.0248 (5) | 0.0218 (5) | 0.0022 (4) | −0.0002 (4) | −0.0008 (4) |
O1W | 0.030 (3) | 0.050 (3) | 0.021 (3) | 0.003 (3) | 0.008 (2) | 0.006 (3) |
O2W | 0.034 (3) | 0.031 (3) | 0.046 (4) | 0.001 (2) | −0.012 (3) | −0.004 (3) |
O3W | 0.036 (3) | 0.029 (3) | 0.043 (3) | 0.002 (2) | −0.010 (3) | −0.008 (3) |
O4W | 0.028 (2) | 0.044 (3) | 0.029 (3) | 0.005 (3) | 0.000 (2) | 0.007 (3) |
N11 | 0.024 (3) | 0.027 (3) | 0.028 (3) | 0.006 (3) | 0.003 (3) | 0.001 (3) |
C12 | 0.034 (4) | 0.031 (4) | 0.025 (4) | −0.007 (4) | 0.003 (3) | 0.007 (3) |
C13 | 0.032 (4) | 0.039 (4) | 0.035 (4) | 0.006 (4) | −0.003 (4) | 0.007 (3) |
N21 | 0.029 (3) | 0.022 (3) | 0.031 (3) | −0.003 (3) | −0.001 (3) | −0.004 (3) |
C22 | 0.019 (3) | 0.023 (4) | 0.026 (4) | −0.001 (3) | 0.002 (3) | 0.003 (3) |
C23 | 0.028 (4) | 0.034 (4) | 0.055 (5) | 0.008 (4) | 0.011 (4) | 0.011 (4) |
Co2 | 0.0225 (5) | 0.0211 (5) | 0.0231 (5) | 0.0001 (4) | −0.0011 (4) | 0.0016 (4) |
Cl1 | 0.0425 (11) | 0.0256 (9) | 0.0497 (12) | 0.0065 (8) | −0.0087 (11) | −0.0011 (9) |
Cl2 | 0.0243 (8) | 0.0487 (11) | 0.0288 (9) | −0.0083 (8) | −0.0021 (8) | 0.0050 (9) |
Cl3 | 0.0302 (9) | 0.0409 (10) | 0.0269 (9) | −0.0002 (10) | 0.0028 (8) | 0.0094 (8) |
Cl4 | 0.0293 (9) | 0.0270 (8) | 0.0272 (9) | −0.0022 (8) | 0.0009 (8) | −0.0032 (7) |
Co1—O1W | 2.085 (5) | N11—C12 | 1.130 (10) |
Co1—O2W | 2.076 (5) | C12—C13 | 1.458 (11) |
Co1—O3W | 2.067 (5) | C13—H13A | 0.9807 |
Co1—O4W | 2.088 (5) | C13—H13B | 0.9805 |
Co1—N11 | 2.093 (6) | C13—H13C | 0.9806 |
Co1—N21 | 2.106 (6) | N21—C22 | 1.132 (9) |
O1W—H1WA | 0.9007 | C22—C23 | 1.436 (10) |
O1W—H1WB | 0.9005 | C23—H23A | 0.9805 |
O2W—H2WA | 0.9005 | C23—H23B | 0.9805 |
O2W—H2WB | 0.9005 | C23—H23C | 0.9807 |
O3W—H3WA | 0.9005 | Co2—Cl1 | 2.260 (2) |
O3W—H3WB | 0.9009 | Co2—Cl2 | 2.2760 (19) |
O4W—H4WA | 0.9007 | Co2—Cl3 | 2.2787 (19) |
O4W—H4WB | 0.9008 | Co2—Cl4 | 2.3185 (18) |
O3W—Co1—O2W | 177.1 (2) | Co1—O4W—H4WB | 134.6 |
O3W—Co1—O1W | 91.3 (2) | H4WA—O4W—H4WB | 107.1 |
O2W—Co1—O1W | 91.0 (2) | C12—N11—Co1 | 173.6 (6) |
O3W—Co1—O4W | 88.8 (2) | N11—C12—C13 | 178.2 (8) |
O2W—Co1—O4W | 88.7 (2) | C12—C13—H13A | 109.6 |
O1W—Co1—O4W | 178.1 (2) | C12—C13—H13B | 109.3 |
O3W—Co1—N11 | 91.1 (2) | H13A—C13—H13B | 109.5 |
O2W—Co1—N11 | 90.5 (2) | C12—C13—H13C | 109.4 |
O1W—Co1—N11 | 92.2 (2) | H13A—C13—H13C | 109.5 |
O4W—Co1—N11 | 89.7 (2) | H13B—C13—H13C | 109.5 |
O3W—Co1—N21 | 89.6 (2) | C22—N21—Co1 | 171.1 (6) |
O2W—Co1—N21 | 88.8 (2) | N21—C22—C23 | 178.2 (8) |
O1W—Co1—N21 | 88.2 (2) | C22—C23—H23A | 109.2 |
O4W—Co1—N21 | 89.9 (2) | C22—C23—H23B | 109.3 |
N11—Co1—N21 | 179.2 (2) | H23A—C23—H23B | 109.5 |
Co1—O1W—H1WA | 133.6 | C22—C23—H23C | 109.8 |
Co1—O1W—H1WB | 111.9 | H23A—C23—H23C | 109.5 |
H1WA—O1W—H1WB | 107.2 | H23B—C23—H23C | 109.5 |
Co1—O2W—H2WA | 143.4 | Cl1—Co2—Cl2 | 109.11 (9) |
Co1—O2W—H2WB | 106.7 | Cl1—Co2—Cl3 | 110.97 (9) |
H2WA—O2W—H2WB | 107.1 | Cl2—Co2—Cl3 | 112.66 (8) |
Co1—O3W—H3WA | 136.8 | Cl1—Co2—Cl4 | 109.74 (8) |
Co1—O3W—H3WB | 113.9 | Cl2—Co2—Cl4 | 107.45 (8) |
H3WA—O3W—H3WB | 107.4 | Cl3—Co2—Cl4 | 106.80 (7) |
Co1—O4W—H4WA | 105.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···Cl2i | 0.90 | 2.34 | 3.185 (6) | 155 |
O1W—H1WB···Cl3 | 0.90 | 2.40 | 3.250 (6) | 157 |
O2W—H2WA···Cl4ii | 0.90 | 2.29 | 3.153 (5) | 159 |
O2W—H2WA···Cl4ii | 0.90 | 2.29 | 3.153 (5) | 159 |
O3W—H3WA···Cl3i | 0.90 | 2.34 | 3.163 (6) | 152 |
O3W—H3WB···Cl1iii | 0.90 | 2.30 | 3.191 (6) | 169 |
O4W—H4WA···Cl4iv | 0.90 | 2.35 | 3.201 (5) | 158 |
O4W—H4WB···Cl2v | 0.90 | 2.36 | 3.199 (6) | 155 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C2H3N)2(H2O)4][CoCl4] |
Mr | 413.83 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 170 |
a, b, c (Å) | 7.0569 (4), 12.3209 (8), 17.9698 (12) |
V (Å3) | 1562.43 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.81 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Kuma KM-4-CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.52, 0.57 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6778, 2619, 2386 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.164, 1.03 |
No. of reflections | 2619 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 3.41, −0.58 |
Absolute structure | Flack (1983), 1006 Friedel pairs |
Absolute structure parameter | 0.28 (4) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).
Co1—O1W | 2.085 (5) | Co1—N21 | 2.106 (6) |
Co1—O2W | 2.076 (5) | Co2—Cl1 | 2.260 (2) |
Co1—O3W | 2.067 (5) | Co2—Cl2 | 2.2760 (19) |
Co1—O4W | 2.088 (5) | Co2—Cl3 | 2.2787 (19) |
Co1—N11 | 2.093 (6) | Co2—Cl4 | 2.3185 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···Cl2i | 0.90 | 2.34 | 3.185 (6) | 155.2 |
O1W—H1WB···Cl3 | 0.90 | 2.40 | 3.250 (6) | 156.6 |
O2W—H2WA···Cl4ii | 0.90 | 2.29 | 3.153 (5) | 159.3 |
O2W—H2WA···Cl4ii | 0.90 | 2.29 | 3.153 (5) | 159.3 |
O3W—H3WA···Cl3i | 0.90 | 2.34 | 3.163 (6) | 151.7 |
O3W—H3WB···Cl1iii | 0.90 | 2.30 | 3.191 (6) | 169.1 |
O4W—H4WA···Cl4iv | 0.90 | 2.35 | 3.201 (5) | 157.5 |
O4W—H4WB···Cl2v | 0.90 | 2.36 | 3.199 (6) | 154.5 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+3/2, −y+1, z−1/2; (v) −x+1/2, −y+1, z−1/2. |
Acknowledgements
This research was carried out as part of a Polish Ministry of Higher Education and Science project (grant No. NN 204 2716 33).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m179–m180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Acta Cryst. E58, m444–m446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beauchamp, D. A. & Loeb, S. J. (2002). Chem. Eur. J. 8, 5084–5088. CrossRef PubMed CAS Google Scholar
Depree, C. V., Ainscough, E. W., Brodie, A. M., Gainsford, G. J. & Lensink, C. (2000). Acta Cryst. C56, 17–18. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kopylovich, M. N., Kukushkin, V. Yu., Guedes da Silva, M. F. C., Haukka, M., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569–1573. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malkov, A. E., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Egorov, I. M., Latosh, N. I., Chupakhin, O. N., Rusinov, G. L., Rakitin, Yu. V., Novotortsev, V. M., Ikorskii, V. N., Eremenko, I. L. & Moiseev, I. I. (2003). J. Mol. Struct. 656, 207–224. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Stefankiewicz, A. R., Wałęsa, M., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J.-M. (2008). Eur. J. Inorg. Chem. pp. 2910–2920. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our studies on new helical metal complexes (e.g. Stefankiewicz et al., 2008), we have prepared by chance the new trans-bis(acetonitrile-N)tetraaquacobalt(II) salt, with CoCl4 as the dianion. Surprisingly, there are only few examples of other salts of this dication, and in all six structures deposited in the CSDC (Ver. 5.29, Nov. 2007, Allen, 2002) the stoichiometry is 1:2, i.e. there are only monoanions.
In the cation the cobalt(ii) is octahedrally coordinated, with almost ideal geometry: the Co—N(O) distances are in the range 2.067 (5)–2.106 (5) Å, and the angles within the octahedron do not deviate more than 3° from the ideal values of 90° and 180°. The anion, as usual for CoCl4, forms a tetrahedron which geometry also deviates only slightly from the ideal values (see Fig. 1).
Both cations and anions are connected by the three dimensional network of O—H(water)···Cl hydrogen bonds. Interestingly, there is a correlation between the number of hydrogen bonds accepted by the Cl atom and the lengths of the Co—Cl bond: shorter the bond, less hydrogen bonds it accepts. The hydrogen bond network is built predominantly from the different rings, with 4 donors (4 different hydrogen atoms) and 2, 3, or 4 different chlorine atoms. The most important motifs found - not taking into account simple non-cyclic dimers of the form O—H···Cl - can be described with graph set symbols as R42(10), R43(10) and R44(14).