metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m173-m174

trans-Bis(aceto­nitrile-κN)tetra­aqua­cobalt(II) tetra­chloridocobaltate(II)

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 10 December 2008; accepted 7 January 2009; online 10 January 2009)

In the title complex, [Co(CH3CN)2(H2O)4][CoCl4], the CoII ions are octa­hedrally coordinated in the cation, with trans-disposed acetonitrile ligands, and tetra­hedrally coordinated in the anion. An extensive network of O—H(water)⋯Cl hydrogen bonds between cations and anions connects the ions into a three-dimensional network. The Co—Cl distances correlate with the number of hydrogen bonds accepted by the Cl atoms.

Related literature

For background to our studies on new helical metal complexes, see: Stefankiewicz et al. (2008[Stefankiewicz, A. R., Wałęsa, M., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J.-M. (2008). Eur. J. Inorg. Chem. pp. 2910-2920.]). There are only few examples of other bis­(acetonitrile)tetra­aqua complexes, these are mainly cobalt complexes: bis­(4,7-phenantroline) diperchlorate (Beauchamp & Loeb, 2002[Beauchamp, D. A. & Loeb, S. J. (2002). Chem. Eur. J. 8, 5084-5088.]), dinitrate (Kopylovich et al., 2001[Kopylovich, M. N., Kukushkin, V. Yu., Guedes da Silva, M. F. C., Haukka, M., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569-1573.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Acta Cryst. E58, m444-m446.]), dichloride monohydrate (Malkov et al., 2003[Malkov, A. E., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Egorov, I. M., Latosh, N. I., Chupakhin, O. N., Rusinov, G. L., Rakitin, Yu. V., Novotortsev, V. M., Ikorskii, V. N., Eremenko, I. L. & Moiseev, I. I. (2003). J. Mol. Struct. 656, 207-224.]) and dibromide (Depree et al., 2000[Depree, C. V., Ainscough, E. W., Brodie, A. M., Gainsford, G. J. & Lensink, C. (2000). Acta Cryst. C56, 17-18.]), and one nickel complex, dibromide, has been reported (Assoumatine & Stoeckli-Evans, 2001[Assoumatine, T. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m179-m180.]). All these compounds have 1:2 composition. For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H3N)2(H2O)4][CoCl4]

  • Mr = 413.83

  • Orthorhombic, P 21 21 21

  • a = 7.0569 (4) Å

  • b = 12.3209 (8) Å

  • c = 17.9698 (12) Å

  • V = 1562.43 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 170 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.52, Tmax = 0.57

  • 6778 measured reflections

  • 2619 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.164

  • S = 1.03

  • 2619 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 3.41 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1006 Friedel pairs

  • Flack parameter: 0.28 (4)

Table 1
Selected bond lengths (Å)

Co1—O1W 2.085 (5)
Co1—O2W 2.076 (5)
Co1—O3W 2.067 (5)
Co1—O4W 2.088 (5)
Co1—N11 2.093 (6)
Co1—N21 2.106 (6)
Co2—Cl1 2.260 (2)
Co2—Cl2 2.2760 (19)
Co2—Cl3 2.2787 (19)
Co2—Cl4 2.3185 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl2i 0.90 2.34 3.185 (6) 155
O1W—H1WB⋯Cl3 0.90 2.40 3.250 (6) 157
O2W—H2WA⋯Cl4ii 0.90 2.29 3.153 (5) 159
O2W—H2WA⋯Cl4ii 0.90 2.29 3.153 (5) 159
O3W—H3WA⋯Cl3i 0.90 2.34 3.163 (6) 152
O3W—H3WB⋯Cl1iii 0.90 2.30 3.191 (6) 169
O4W—H4WA⋯Cl4iv 0.90 2.35 3.201 (5) 158
O4W—H4WB⋯Cl2v 0.90 2.36 3.199 (6) 155
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on new helical metal complexes (e.g. Stefankiewicz et al., 2008), we have prepared by chance the new trans-bis(acetonitrile-N)tetraaquacobalt(II) salt, with CoCl4 as the dianion. Surprisingly, there are only few examples of other salts of this dication, and in all six structures deposited in the CSDC (Ver. 5.29, Nov. 2007, Allen, 2002) the stoichiometry is 1:2, i.e. there are only monoanions.

In the cation the cobalt(ii) is octahedrally coordinated, with almost ideal geometry: the Co—N(O) distances are in the range 2.067 (5)–2.106 (5) Å, and the angles within the octahedron do not deviate more than 3° from the ideal values of 90° and 180°. The anion, as usual for CoCl4, forms a tetrahedron which geometry also deviates only slightly from the ideal values (see Fig. 1).

Both cations and anions are connected by the three dimensional network of O—H(water)···Cl hydrogen bonds. Interestingly, there is a correlation between the number of hydrogen bonds accepted by the Cl atom and the lengths of the Co—Cl bond: shorter the bond, less hydrogen bonds it accepts. The hydrogen bond network is built predominantly from the different rings, with 4 donors (4 different hydrogen atoms) and 2, 3, or 4 different chlorine atoms. The most important motifs found - not taking into account simple non-cyclic dimers of the form O—H···Cl - can be described with graph set symbols as R42(10), R43(10) and R44(14).

Related literature top

For background to our studies on new helical metal complexes, see: Stefankiewicz et al. (2008). There are only few examples of other bis(acetonitrile)tetraaqua complexes, these are mainly cobalt complexes: bis(4,7-phenantroline) diperchlorate (Beauchamp & Loeb, 2002), dinitrate (Kopylovich et al., 2001; Barnett et al., 2002), dichloride monohydrate (Malkov et al., 2003) and dibromide (Depree et al., 2000), and one nickel complex, dibromide, has been reported (Assoumatine & Stoeckli-Evans, 2001). All these compounds have 1:2 stoichiometry. For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The complex was prepared as described previously (Stefankiewicz et al., 2008). The main product of this reaction was complex [Co(C22H18N4)(H2O)Cl](BF4).

Refinement top

Hydrogen atoms were located geometrically, in case of the water molecules on the basis of potential hydrogen bonds, and refined as the 'riding model' with Uiso's set at 1.3 times Ueq's of appropriate oxygen atoms. The relatively large values of residual electron density is probably an effect of unresolved twinning; the efforts on describing this twinning did not improve the model.

The Flack parameter (0.28 (4)) could suggest the possibility of a wrong absolute structure; however, the refinement of the inverted structure led to the higher values of the R-parameters (R(F) of 6.66% for observed and 7.13% for all reflections, wR2 is 16.35%) as well as for Flack parameter, which is 0.65 (4) in this case.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of compound I with atom labelling scheme (Siemens, 1989). The ellipsoids are drawn at the 50% probability level, hydrogen atoms are depicted as spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing as seen approximately along a direction (Macrae et al., 2008). Hydrogen bonds are depicted as dashed lines.
trans-Bis(acetonitrile-κN)tetraaquacobalt(II) tetrachloridocobaltate(II) top
Crystal data top
[Co(C2H3N)2(H2O)4][CoCl4]F(000) = 824
Mr = 413.83Dx = 1.759 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5736 reflections
a = 7.0569 (4) Åθ = 4–22°
b = 12.3209 (8) ŵ = 2.81 mm1
c = 17.9698 (12) ÅT = 170 K
V = 1562.43 (17) Å3Prism, blue
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Kuma KM-4-CCD
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube2386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 88
Tmin = 0.52, Tmax = 0.57k = 1414
6778 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.131P)2 + 0.4597P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 3.41 e Å3
145 parametersΔρmin = 0.58 e Å3
0 restraintsAbsolute structure: Flack (1983), 1006 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.28 (4)
Crystal data top
[Co(C2H3N)2(H2O)4][CoCl4]V = 1562.43 (17) Å3
Mr = 413.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0569 (4) ŵ = 2.81 mm1
b = 12.3209 (8) ÅT = 170 K
c = 17.9698 (12) Å0.2 × 0.2 × 0.2 mm
Data collection top
Kuma KM-4-CCD
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2386 reflections with I > 2σ(I)
Tmin = 0.52, Tmax = 0.57Rint = 0.027
6778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.164Δρmax = 3.41 e Å3
S = 1.03Δρmin = 0.58 e Å3
2619 reflectionsAbsolute structure: Flack (1983), 1006 Friedel pairs
145 parametersAbsolute structure parameter: 0.28 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75813 (15)0.49124 (7)0.11221 (5)0.0234 (3)
O1W0.6109 (8)0.4648 (5)0.2112 (3)0.0336 (13)
H1WA0.64690.45710.25900.044*
H1WB0.49770.49850.21130.044*
O2W0.6278 (8)0.3582 (4)0.0632 (3)0.0369 (14)
H2WA0.63440.28550.05840.048*
H2WB0.50700.37750.05400.048*
O3W0.8873 (8)0.6277 (4)0.1558 (3)0.0363 (14)
H3WA1.00170.64480.17470.047*
H3WB0.82870.69030.14400.047*
O4W0.8975 (7)0.5205 (4)0.0117 (3)0.0336 (13)
H4WA0.98980.47020.00910.044*
H4WB0.85950.53390.03530.044*
N110.9845 (8)0.3935 (5)0.1465 (3)0.0262 (13)
C121.1077 (12)0.3375 (6)0.1583 (4)0.0299 (18)
C131.2670 (12)0.2646 (6)0.1711 (5)0.0353 (18)
H13A1.34620.26120.12630.046*
H13B1.21920.19180.18280.046*
H13C1.34280.29160.21300.046*
N210.5299 (9)0.5881 (5)0.0764 (4)0.0274 (14)
C220.4087 (10)0.6463 (6)0.0660 (4)0.0229 (15)
C230.2587 (12)0.7229 (6)0.0533 (5)0.0389 (19)
H23A0.25990.77750.09300.051*
H23B0.13670.68480.05360.051*
H23C0.27670.75870.00510.051*
Co20.16403 (13)0.51515 (7)0.35869 (5)0.0222 (3)
Cl10.3220 (3)0.35571 (15)0.36207 (13)0.0393 (5)
Cl20.1531 (2)0.48179 (16)0.36180 (10)0.0339 (5)
Cl30.2520 (3)0.61534 (15)0.25785 (10)0.0327 (5)
Cl40.2382 (3)0.61707 (13)0.46316 (9)0.0278 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0234 (5)0.0248 (5)0.0218 (5)0.0022 (4)0.0002 (4)0.0008 (4)
O1W0.030 (3)0.050 (3)0.021 (3)0.003 (3)0.008 (2)0.006 (3)
O2W0.034 (3)0.031 (3)0.046 (4)0.001 (2)0.012 (3)0.004 (3)
O3W0.036 (3)0.029 (3)0.043 (3)0.002 (2)0.010 (3)0.008 (3)
O4W0.028 (2)0.044 (3)0.029 (3)0.005 (3)0.000 (2)0.007 (3)
N110.024 (3)0.027 (3)0.028 (3)0.006 (3)0.003 (3)0.001 (3)
C120.034 (4)0.031 (4)0.025 (4)0.007 (4)0.003 (3)0.007 (3)
C130.032 (4)0.039 (4)0.035 (4)0.006 (4)0.003 (4)0.007 (3)
N210.029 (3)0.022 (3)0.031 (3)0.003 (3)0.001 (3)0.004 (3)
C220.019 (3)0.023 (4)0.026 (4)0.001 (3)0.002 (3)0.003 (3)
C230.028 (4)0.034 (4)0.055 (5)0.008 (4)0.011 (4)0.011 (4)
Co20.0225 (5)0.0211 (5)0.0231 (5)0.0001 (4)0.0011 (4)0.0016 (4)
Cl10.0425 (11)0.0256 (9)0.0497 (12)0.0065 (8)0.0087 (11)0.0011 (9)
Cl20.0243 (8)0.0487 (11)0.0288 (9)0.0083 (8)0.0021 (8)0.0050 (9)
Cl30.0302 (9)0.0409 (10)0.0269 (9)0.0002 (10)0.0028 (8)0.0094 (8)
Cl40.0293 (9)0.0270 (8)0.0272 (9)0.0022 (8)0.0009 (8)0.0032 (7)
Geometric parameters (Å, º) top
Co1—O1W2.085 (5)N11—C121.130 (10)
Co1—O2W2.076 (5)C12—C131.458 (11)
Co1—O3W2.067 (5)C13—H13A0.9807
Co1—O4W2.088 (5)C13—H13B0.9805
Co1—N112.093 (6)C13—H13C0.9806
Co1—N212.106 (6)N21—C221.132 (9)
O1W—H1WA0.9007C22—C231.436 (10)
O1W—H1WB0.9005C23—H23A0.9805
O2W—H2WA0.9005C23—H23B0.9805
O2W—H2WB0.9005C23—H23C0.9807
O3W—H3WA0.9005Co2—Cl12.260 (2)
O3W—H3WB0.9009Co2—Cl22.2760 (19)
O4W—H4WA0.9007Co2—Cl32.2787 (19)
O4W—H4WB0.9008Co2—Cl42.3185 (18)
O3W—Co1—O2W177.1 (2)Co1—O4W—H4WB134.6
O3W—Co1—O1W91.3 (2)H4WA—O4W—H4WB107.1
O2W—Co1—O1W91.0 (2)C12—N11—Co1173.6 (6)
O3W—Co1—O4W88.8 (2)N11—C12—C13178.2 (8)
O2W—Co1—O4W88.7 (2)C12—C13—H13A109.6
O1W—Co1—O4W178.1 (2)C12—C13—H13B109.3
O3W—Co1—N1191.1 (2)H13A—C13—H13B109.5
O2W—Co1—N1190.5 (2)C12—C13—H13C109.4
O1W—Co1—N1192.2 (2)H13A—C13—H13C109.5
O4W—Co1—N1189.7 (2)H13B—C13—H13C109.5
O3W—Co1—N2189.6 (2)C22—N21—Co1171.1 (6)
O2W—Co1—N2188.8 (2)N21—C22—C23178.2 (8)
O1W—Co1—N2188.2 (2)C22—C23—H23A109.2
O4W—Co1—N2189.9 (2)C22—C23—H23B109.3
N11—Co1—N21179.2 (2)H23A—C23—H23B109.5
Co1—O1W—H1WA133.6C22—C23—H23C109.8
Co1—O1W—H1WB111.9H23A—C23—H23C109.5
H1WA—O1W—H1WB107.2H23B—C23—H23C109.5
Co1—O2W—H2WA143.4Cl1—Co2—Cl2109.11 (9)
Co1—O2W—H2WB106.7Cl1—Co2—Cl3110.97 (9)
H2WA—O2W—H2WB107.1Cl2—Co2—Cl3112.66 (8)
Co1—O3W—H3WA136.8Cl1—Co2—Cl4109.74 (8)
Co1—O3W—H3WB113.9Cl2—Co2—Cl4107.45 (8)
H3WA—O3W—H3WB107.4Cl3—Co2—Cl4106.80 (7)
Co1—O4W—H4WA105.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl2i0.902.343.185 (6)155
O1W—H1WB···Cl30.902.403.250 (6)157
O2W—H2WA···Cl4ii0.902.293.153 (5)159
O2W—H2WA···Cl4ii0.902.293.153 (5)159
O3W—H3WA···Cl3i0.902.343.163 (6)152
O3W—H3WB···Cl1iii0.902.303.191 (6)169
O4W—H4WA···Cl4iv0.902.353.201 (5)158
O4W—H4WB···Cl2v0.902.363.199 (6)155
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H3N)2(H2O)4][CoCl4]
Mr413.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)170
a, b, c (Å)7.0569 (4), 12.3209 (8), 17.9698 (12)
V3)1562.43 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.81
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.52, 0.57
No. of measured, independent and
observed [I > 2σ(I)] reflections
6778, 2619, 2386
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.164, 1.03
No. of reflections2619
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.41, 0.58
Absolute structureFlack (1983), 1006 Friedel pairs
Absolute structure parameter0.28 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).

Selected bond lengths (Å) top
Co1—O1W2.085 (5)Co1—N212.106 (6)
Co1—O2W2.076 (5)Co2—Cl12.260 (2)
Co1—O3W2.067 (5)Co2—Cl22.2760 (19)
Co1—O4W2.088 (5)Co2—Cl32.2787 (19)
Co1—N112.093 (6)Co2—Cl42.3185 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl2i0.902.343.185 (6)155.2
O1W—H1WB···Cl30.902.403.250 (6)156.6
O2W—H2WA···Cl4ii0.902.293.153 (5)159.3
O2W—H2WA···Cl4ii0.902.293.153 (5)159.3
O3W—H3WA···Cl3i0.902.343.163 (6)151.7
O3W—H3WB···Cl1iii0.902.303.191 (6)169.1
O4W—H4WA···Cl4iv0.902.353.201 (5)157.5
O4W—H4WB···Cl2v0.902.363.199 (6)154.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+1/2, y+1, z1/2.
 

Acknowledgements

This research was carried out as part of a Polish Ministry of Higher Education and Science project (grant No. NN 204 2716 33).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2001). Acta Cryst. E57, m179–m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Acta Cryst. E58, m444–m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeauchamp, D. A. & Loeb, S. J. (2002). Chem. Eur. J. 8, 5084–5088.  CrossRef PubMed CAS Google Scholar
First citationDepree, C. V., Ainscough, E. W., Brodie, A. M., Gainsford, G. J. & Lensink, C. (2000). Acta Cryst. C56, 17–18.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKopylovich, M. N., Kukushkin, V. Yu., Guedes da Silva, M. F. C., Haukka, M., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1569–1573.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalkov, A. E., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Egorov, I. M., Latosh, N. I., Chupakhin, O. N., Rusinov, G. L., Rakitin, Yu. V., Novotortsev, V. M., Ikorskii, V. N., Eremenko, I. L. & Moiseev, I. I. (2003). J. Mol. Struct. 656, 207–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStefankiewicz, A. R., Wałęsa, M., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J.-M. (2008). Eur. J. Inorg. Chem. pp. 2910–2920.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m173-m174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds