metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­bis­[4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl-3-oxide-κ2O,N]manganese(II)

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 25 December 2008; accepted 7 January 2009; online 14 January 2009)

In the crystal structure of the title compound, [Mn(N3)2(C10H14N3O2S)2], the Mn(II) atom exhibits a roughly octa­hedral coordination geometry. The Mn(II) atom lies on an inversion centre, thus the asymmetric unit comprises one half-mol­ecule. The metal center is six-coordinated by two azide anions and by two chelating 4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands, leading to two six-membered chelate rings.

Related literature

For the design and synthesis of mol­ecule-based magnetic materials, see: Aoki et al. (2003[Aoki, C., Ishida, T. & Nogami, T. (2003). Inorg. Chem. 42, 7616-7625.]). For nitronyl nitroxide radicals, see: Minguet et al. (2000[Minguet, M., Amabilino, D. B., Cirujeda, J., Wurst, K., Mata, I., Molins, E., Novoa, J. J. & Veciana, J. (2000). Chem. Eur. J. 6, 2350-2361.]); Catala et al. (2005[Catala, L., Moigne, J. L., Gruber, N., Novoa, J. J., Rabu, P., Belorizky, E. & Turek, P. (2005). Chem. Eur. J. 11, 2440-2454.]). For transition metal–radical complexes, see: Wang et al. (2005[Wang, L.-Y., Chang, J.-L., Jiang, K., Ma, L.-F. & Wang, Y.-F. (2005). Acta Cryst. E61, m2230-m2231.]). For paramagnetic metal complexes of nitronyl nitroxide radicals, see: Li et al. (2002[Li, L. C., Liao, D. Z., Jiang, Z. H. & &Yan, S. P. (2002). J. Chem. Soc. Dalton Trans. pp. 1350-1353.]); Liu et al. (2001[Liu, Z. L., Zhao, Q. H., Li, S. Q., Liao, D. Z. & Jiang, Z. H. (2001). Inorg. Chem. Commun. 4, 322-325.]). For the synthesis, see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623-3628.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.])

[Scheme 1]

Experimental

Crystal data
  • [Mn(N3)2(C10H14N3O2S)2]

  • Mr = 619.60

  • Monoclinic, P 21 /c

  • a = 9.9600 (18) Å

  • b = 12.272 (2) Å

  • c = 11.353 (2) Å

  • β = 103.714 (3)°

  • V = 1348.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 291 (2) K

  • 0.45 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.846

  • 7966 measured reflections

  • 3061 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.06

  • 3061 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009) publCIF. In preparation.]).

Supporting information


Comment top

The design and synthesis of molecule-based magnetic materials is one of the major subjects of materials science(Aoki et al. 2003). In many different types of organic radicals, research has focused on the nitronyl nitroxide radicals (NITR) family because of their flexibility and functionality (Minguet et al. 2000; Catala et al. 2005). The nitroxide derivatives can be bound to the metal center through the oxygen atoms of O–N groups, affording a good variety of transition metal–radical complexes (Wang et al. 2005;). There have been many magnetic studies on transition metal complexes with nitronyl nitroxide and imino nitroxide radicals and paramagnetic metal complexes of nitronyl nitroxide radicals have been extensively studied (Li et al. 2002; Liu et al. 2001). In the present paper, we report the synthesis and crystal structure of the title compound Mn(N3)2(NIT2-thz)2.

Related literature top

For the design and synthesis of molecule-based magnetic materials, see: Aoki et al. 2003. For nitronyl nitroxide radicals, see: Minguet et al. (2000); Catala et al. (2005). For transition metal–radical complexes, see: Wang et al. (2005). For paramagnetic metal complexes of nitronyl nitroxide radicals, see: Li et al. (2002); Liu et al. (2001). For the synthesis of the title compound see: Ullman et al. (1970, 1972)

Experimental top

NIT2-thz [NIT2-thz = 4,4,5,5-tetramethyl-2-(1,3-thiazol-2-yl)-2-imidazoline-1-oxyl-3-oxide] was synthesized using a method in the literatrue (Ullman et al. 1970; Ullman et al. 1972). Mn (Ac)2. 4H2O(1 mmol) and NIT2-thz (2 mmol) were mixed in 30 ml of methanol. An aqueous solution (10 ml) of NaN3 (2 mmol) was added to this solution. The mixture was stirred for an 1 h and filtered off. The filtrate was kept at room temperatrue for 1 meek, and well formed dark brown crstals of Mn(N3)2(NIT2-thz)2 were obtained.

Refinement top

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level.[symmetry codes: x,-y,-z + 1].
Diazidobis[4,4,5,5-tetramethyl-2-(1,3-thiazol-2-yl)-2-imidazoline-1-oxyl- 3-oxide-κ2O,N]manganese(II) top
Crystal data top
[Mn(N3)2(C10H14N3O2S)2]F(000) = 642
Mr = 619.60Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4318 reflections
a = 9.9600 (18) Åθ = 2.5–28.2°
b = 12.272 (2) ŵ = 0.70 mm1
c = 11.353 (2) ÅT = 291 K
β = 103.714 (3)°Block, dark brown
V = 1348.1 (4) Å30.45 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3061 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.745, Tmax = 0.846k = 1515
7966 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2559P]
where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Mn(N3)2(C10H14N3O2S)2]V = 1348.1 (4) Å3
Mr = 619.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9600 (18) ŵ = 0.70 mm1
b = 12.272 (2) ÅT = 291 K
c = 11.353 (2) Å0.45 × 0.30 × 0.25 mm
β = 103.714 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2628 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.846Rint = 0.036
7966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3061 reflectionsΔρmin = 0.25 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.50000.03345 (14)
S10.25159 (5)0.27889 (4)0.36683 (5)0.05049 (17)
O10.17034 (15)0.08711 (11)0.44955 (14)0.0504 (4)
O20.38630 (18)0.14599 (13)0.23568 (17)0.0660 (5)
N10.12384 (15)0.14413 (11)0.47278 (13)0.0337 (3)
N20.23912 (14)0.05108 (11)0.37542 (13)0.0336 (3)
N30.34509 (15)0.05765 (13)0.27421 (14)0.0407 (4)
N40.1080 (2)0.00819 (18)0.31193 (18)0.0641 (6)
N50.08511 (17)0.04681 (12)0.22465 (15)0.0433 (4)
N60.0640 (3)0.08223 (18)0.13715 (19)0.0761 (7)
C10.1569 (2)0.32772 (15)0.4616 (2)0.0495 (5)
H10.14790.40120.47820.059*
C20.0969 (2)0.24624 (14)0.50955 (17)0.0412 (4)
H20.04130.25840.56350.049*
C30.20718 (16)0.14870 (12)0.39806 (15)0.0318 (3)
C40.25886 (16)0.05337 (13)0.34979 (15)0.0317 (3)
C50.40415 (19)0.05207 (16)0.25646 (16)0.0406 (4)
C60.30045 (18)0.12873 (14)0.29998 (16)0.0382 (4)
C70.4089 (3)0.0651 (2)0.12397 (19)0.0628 (6)
H7A0.31790.05510.07320.094*
H7B0.44170.13670.11140.094*
H7C0.47020.01160.10390.094*
C80.5497 (2)0.0545 (2)0.3366 (2)0.0601 (6)
H8A0.60290.00370.31370.090*
H8B0.59230.12300.32690.090*
H8C0.54610.04550.41970.090*
C90.1798 (2)0.1673 (2)0.1994 (2)0.0595 (6)
H9A0.11020.19900.23460.089*
H9B0.21180.22080.15070.089*
H9C0.14130.10640.14960.089*
C100.3643 (3)0.22455 (19)0.3780 (2)0.0620 (6)
H10A0.42430.19810.45150.093*
H10B0.41670.26800.33450.093*
H10C0.29250.26820.39740.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0362 (2)0.0333 (2)0.0373 (2)0.00148 (13)0.02166 (16)0.00206 (13)
S10.0483 (3)0.0342 (2)0.0743 (4)0.00716 (19)0.0251 (3)0.0074 (2)
O10.0597 (9)0.0351 (6)0.0717 (10)0.0065 (6)0.0459 (8)0.0095 (6)
O20.0697 (10)0.0592 (9)0.0861 (12)0.0037 (8)0.0525 (10)0.0169 (8)
N10.0365 (7)0.0299 (7)0.0381 (7)0.0019 (5)0.0156 (6)0.0003 (5)
N20.0325 (7)0.0336 (7)0.0395 (8)0.0037 (5)0.0182 (6)0.0003 (6)
N30.0371 (8)0.0466 (8)0.0452 (8)0.0000 (6)0.0230 (7)0.0038 (7)
N40.0681 (13)0.0827 (14)0.0416 (10)0.0251 (10)0.0134 (9)0.0060 (9)
N50.0497 (9)0.0360 (8)0.0453 (9)0.0042 (6)0.0138 (7)0.0000 (7)
N60.121 (2)0.0587 (12)0.0582 (12)0.0128 (12)0.0400 (13)0.0104 (10)
C10.0490 (11)0.0305 (8)0.0668 (13)0.0003 (8)0.0093 (10)0.0061 (8)
C20.0449 (10)0.0352 (8)0.0444 (10)0.0065 (7)0.0122 (8)0.0065 (7)
C30.0297 (8)0.0302 (7)0.0372 (8)0.0012 (6)0.0113 (6)0.0028 (6)
C40.0277 (8)0.0361 (8)0.0335 (8)0.0006 (6)0.0118 (6)0.0029 (6)
C50.0346 (9)0.0556 (11)0.0361 (9)0.0076 (7)0.0170 (7)0.0030 (8)
C60.0369 (9)0.0404 (9)0.0402 (9)0.0095 (7)0.0151 (7)0.0048 (7)
C70.0640 (14)0.0898 (17)0.0422 (11)0.0087 (12)0.0277 (10)0.0064 (11)
C80.0358 (10)0.0856 (16)0.0599 (13)0.0054 (10)0.0133 (10)0.0127 (12)
C90.0569 (13)0.0618 (13)0.0587 (13)0.0084 (10)0.0117 (11)0.0173 (10)
C100.0695 (15)0.0542 (12)0.0703 (15)0.0292 (11)0.0324 (13)0.0111 (11)
Geometric parameters (Å, º) top
Mn1—N4i2.153 (2)C2—H20.9300
Mn1—N42.153 (2)C3—C41.438 (2)
Mn1—O1i2.1931 (12)C5—C81.518 (3)
Mn1—O12.1931 (12)C5—C71.525 (3)
Mn1—N12.2194 (14)C5—C61.561 (3)
Mn1—N1i2.2194 (14)C6—C101.518 (3)
S1—C11.699 (2)C6—C91.524 (3)
S1—C31.7170 (16)C7—H7A0.9600
O1—N21.2832 (17)C7—H7B0.9600
O2—N31.273 (2)C7—H7C0.9600
N1—C31.321 (2)C8—H8A0.9600
N1—C21.367 (2)C8—H8B0.9600
N2—C41.339 (2)C8—H8C0.9600
N2—C61.504 (2)C9—H9A0.9600
N3—C41.3513 (19)C9—H9B0.9600
N3—C51.502 (2)C9—H9C0.9600
N4—N51.168 (2)C10—H10A0.9600
N5—N61.148 (2)C10—H10B0.9600
C1—C21.345 (3)C10—H10C0.9600
C1—H10.9300
N4i—Mn1—N4180.0N2—C4—C3127.70 (14)
N4i—Mn1—O1i89.95 (8)N3—C4—C3123.31 (15)
N4—Mn1—O1i90.05 (8)N3—C5—C8106.60 (17)
N4i—Mn1—O190.05 (8)N3—C5—C7109.34 (17)
N4—Mn1—O189.95 (8)C8—C5—C7109.88 (17)
O1i—Mn1—O1180.0N3—C5—C6100.84 (13)
N4i—Mn1—N190.68 (6)C8—C5—C6114.10 (17)
N4—Mn1—N189.32 (6)C7—C5—C6115.27 (18)
O1i—Mn1—N197.92 (5)N2—C6—C10109.20 (15)
O1—Mn1—N182.08 (5)N2—C6—C9105.59 (15)
N4i—Mn1—N1i89.32 (6)C10—C6—C9110.10 (19)
N4—Mn1—N1i90.68 (6)N2—C6—C5100.77 (13)
O1i—Mn1—N1i82.08 (5)C10—C6—C5115.73 (16)
O1—Mn1—N1i97.92 (5)C9—C6—C5114.43 (16)
N1—Mn1—N1i180.0C5—C7—H7A109.5
C1—S1—C389.35 (9)C5—C7—H7B109.5
N2—O1—Mn1124.73 (10)H7A—C7—H7B109.5
C3—N1—C2110.83 (14)C5—C7—H7C109.5
C3—N1—Mn1125.29 (11)H7A—C7—H7C109.5
C2—N1—Mn1122.15 (11)H7B—C7—H7C109.5
O1—N2—C4126.95 (13)C5—C8—H8A109.5
O1—N2—C6120.47 (13)C5—C8—H8B109.5
C4—N2—C6112.47 (13)H8A—C8—H8B109.5
O2—N3—C4123.82 (15)C5—C8—H8C109.5
O2—N3—C5123.29 (14)H8A—C8—H8C109.5
C4—N3—C5112.24 (14)H8B—C8—H8C109.5
N5—N4—Mn1135.07 (17)C6—C9—H9A109.5
N6—N5—N4178.1 (2)C6—C9—H9B109.5
C2—C1—S1111.16 (14)H9A—C9—H9B109.5
C2—C1—H1124.4C6—C9—H9C109.5
S1—C1—H1124.4H9A—C9—H9C109.5
C1—C2—N1114.81 (16)H9B—C9—H9C109.5
C1—C2—H2122.6C6—C10—H10A109.5
N1—C2—H2122.6C6—C10—H10B109.5
N1—C3—C4123.11 (14)H10A—C10—H10B109.5
N1—C3—S1113.83 (12)C6—C10—H10C109.5
C4—C3—S1123.04 (12)H10A—C10—H10C109.5
N2—C4—N3108.87 (14)H10B—C10—H10C109.5
N4i—Mn1—O1—N2122.97 (15)O1—N2—C4—N3175.59 (17)
N4—Mn1—O1—N257.03 (15)C6—N2—C4—N38.19 (19)
O1i—Mn1—O1—N2105 (8)O1—N2—C4—C30.6 (3)
N1—Mn1—O1—N232.28 (14)C6—N2—C4—C3175.65 (17)
N1i—Mn1—O1—N2147.72 (14)O2—N3—C4—N2178.27 (17)
N4i—Mn1—N1—C3118.52 (15)C5—N3—C4—N27.24 (19)
N4—Mn1—N1—C361.48 (15)O2—N3—C4—C31.9 (3)
O1i—Mn1—N1—C3151.43 (14)C5—N3—C4—C3169.12 (16)
O1—Mn1—N1—C328.57 (14)N1—C3—C4—N23.7 (3)
N1i—Mn1—N1—C324.5 (17)S1—C3—C4—N2174.59 (14)
N4i—Mn1—N1—C277.84 (15)N1—C3—C4—N3179.39 (16)
N4—Mn1—N1—C2102.16 (15)S1—C3—C4—N31.1 (2)
O1i—Mn1—N1—C212.20 (15)O2—N3—C5—C870.0 (2)
O1—Mn1—N1—C2167.80 (15)C4—N3—C5—C8101.13 (18)
N1i—Mn1—N1—C2171.9 (18)O2—N3—C5—C748.8 (2)
Mn1—O1—N2—C426.1 (2)C4—N3—C5—C7140.13 (18)
Mn1—O1—N2—C6149.81 (13)O2—N3—C5—C6170.64 (18)
N4i—Mn1—N4—N571 (2)C4—N3—C5—C618.27 (18)
O1i—Mn1—N4—N5118.9 (3)O1—N2—C6—C1042.4 (2)
O1—Mn1—N4—N561.1 (3)C4—N2—C6—C10141.14 (17)
N1—Mn1—N4—N521.0 (3)O1—N2—C6—C976.0 (2)
N1i—Mn1—N4—N5159.0 (3)C4—N2—C6—C9100.50 (18)
Mn1—N4—N5—N6137 (8)O1—N2—C6—C5164.65 (15)
C3—S1—C1—C20.76 (16)C4—N2—C6—C518.85 (18)
S1—C1—C2—N10.1 (2)N3—C5—C6—N220.40 (16)
C3—N1—C2—C11.2 (2)C8—C5—C6—N293.45 (18)
Mn1—N1—C2—C1164.58 (14)C7—C5—C6—N2138.01 (17)
C2—N1—C3—C4176.71 (16)N3—C5—C6—C10138.01 (17)
Mn1—N1—C3—C418.1 (2)C8—C5—C6—C1024.2 (2)
C2—N1—C3—S11.76 (19)C7—C5—C6—C10104.4 (2)
Mn1—N1—C3—S1163.46 (8)N3—C5—C6—C992.35 (18)
C1—S1—C3—N11.47 (15)C8—C5—C6—C9153.79 (17)
C1—S1—C3—C4177.00 (16)C7—C5—C6—C925.3 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(N3)2(C10H14N3O2S)2]
Mr619.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.9600 (18), 12.272 (2), 11.353 (2)
β (°) 103.714 (3)
V3)1348.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
7966, 3061, 2628
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.06
No. of reflections3061
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20471026) and the Natural Science Foundation of Henan Province (grant No. 0311021200).

References

First citationAoki, C., Ishida, T. & Nogami, T. (2003). Inorg. Chem. 42, 7616–7625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationCatala, L., Moigne, J. L., Gruber, N., Novoa, J. J., Rabu, P., Belorizky, E. & Turek, P. (2005). Chem. Eur. J. 11, 2440–2454.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, L. C., Liao, D. Z., Jiang, Z. H. & &Yan, S. P. (2002). J. Chem. Soc. Dalton Trans. pp. 1350–1353.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Z. L., Zhao, Q. H., Li, S. Q., Liao, D. Z. & Jiang, Z. H. (2001). Inorg. Chem. Commun. 4, 322–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationMinguet, M., Amabilino, D. B., Cirujeda, J., Wurst, K., Mata, I., Molins, E., Novoa, J. J. & Veciana, J. (2000). Chem. Eur. J. 6, 2350–2361.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUllman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623–3628.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationWang, L.-Y., Chang, J.-L., Jiang, K., Ma, L.-F. & Wang, Y.-F. (2005). Acta Cryst. E61, m2230–m2231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009) publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds