organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(6-chloro­pyrimidin-4-yl­­oxy)benzene

aCollege of Chemistry and Chemical Engineering, Xinyang Normal Universty, Xinyang, Henan 464000, People's Republic of China, and bCollege of Life Science, Xinyang Normal Universty, Xinyang, Henan 464000, People's Republic of China
*Correspondence e-mail: maw0809@yahoo.com.cn

(Received 15 December 2008; accepted 22 December 2008; online 8 January 2009)

In the title compound, C14H8Cl2N4O2, all atoms of the 6-chloro­pyrimidin-4-yl­oxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal structure is stabilized by weak C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For background information, see: Halim et al. (1999[Halim, M., Pillow, J. N. G., Samuel, I. D. W. & Burn, P. L. (1999). Adv. Mater. 11, 371-C374.]); Meng & Huang (2000[Meng, H. & Huang, W. J. (2000). Org. Chem. 65, 3894-C3901.]); Maes et al. (2003[Maes, W., Amabilino, D. B. & Dehaen, W. (2003). Tetrahedron, 59, 3937-C3943.]); Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burrroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. C. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-C128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Cl2N4O2

  • Mr = 335.14

  • Monoclinic, C 2/m

  • a = 19.0760 (5) Å

  • b = 6.9693 (2) Å

  • c = 10.7893 (3) Å

  • β = 93.301 (3)°

  • V = 1432.02 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 6918 measured reflections

  • 1372 independent reflections

  • 1156 reflections with I > 2σ(I)'

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.07

  • 1372 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.57 3.463 (3) 161
C3—H3⋯N2ii 0.93 2.48 3.355 (3) 157
Symmetry codes: (i) -x, y, -z; (ii) -x+1, y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent publications it has been shown that polymers consisting of heterocyclic building blocks can be used in organic light-emitting diodes (LEDs) because of their electroluminescent properties. (Halim et al., 1999; Friend et al.,1999; Meng & Huang, 2000; Maes et al., 2003). We report here the synthesis and crystal structure the title compound (I) (Fig. 1). All atoms of the 6-chloropyrimidin-4-yloxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The symmetry complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal packing is stabilized by weak intermolecular hydrogen bonds interactions. Each molecule acts as a donor and acceptor to form C–H···O and C–H···N hydrogen bonds with two other symmetry related molecules, forming a chain run parallel to [101] (Fig. 2; Table 2).

Related literature top

For background information, see: Halim et al. (1999); Meng & Huang (2000); Maes et al. (2003); Friend et al. (1999).

Experimental top

Hydroquinone 0.55 g(5 mmol) was dissolved in 50 ml CH3CN, the solution was stirred at room temperature for 0.5 h with an excess of anhydrous K2CO3(2.5 equiv.). After another 0.5 h of reflux, 4,6-dichloropyrimidine2.59 g (10 mmol) in 20 ml CH3CN was added and the mixture was refluxed for 4 h. After evaporation of the solvent, water was added and the mixture was extracted with CH2Cl2 and dried over MgSO4. The products were purified by column chromatography (hexanes/ethyl acetate, 5:1) and obtained as white solids. Colourless block-shapped crystals were obtained by evaporation of CH2Cl2.

Refinement top

After being located in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms with C—H = 0.93Å and Uiso(H)= 1.2Ueq.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [Symmetry codes: (a) x,-y,z].
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown by dashed lines.
1,4-Bis(6-chloropyrimidin-4-yloxy)benzene top
Crystal data top
C14H8Cl2N4O2F(000) = 680
Mr = 335.14Dx = 1.555 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3581 reflections
a = 19.0760 (5) Åθ = 2.8–27.8°
b = 6.9693 (2) ŵ = 0.47 mm1
c = 10.7893 (3) ÅT = 298 K
β = 93.301 (3)°Block, colorless
V = 1432.02 (7) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1156 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 2222
6918 measured reflectionsk = 87
1372 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1372 reflectionsΔρmax = 0.22 e Å3
128 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (13)
Crystal data top
C14H8Cl2N4O2V = 1432.02 (7) Å3
Mr = 335.14Z = 4
Monoclinic, C2/mMo Kα radiation
a = 19.0760 (5) ŵ = 0.47 mm1
b = 6.9693 (2) ÅT = 298 K
c = 10.7893 (3) Å0.20 × 0.10 × 0.10 mm
β = 93.301 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1156 reflections with I > 2σ(I)'
6918 measured reflectionsRint = 0.050
1372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1372 reflectionsΔρmin = 0.25 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34316 (10)0.00000.22381 (18)0.0495 (5)
H10.30020.00000.17860.059*
C20.40565 (11)0.00000.16857 (19)0.0543 (6)
C30.46576 (12)0.00000.3504 (2)0.0666 (7)
H30.50890.00000.39500.080*
C40.34857 (11)0.00000.35261 (19)0.0467 (5)
C50.22554 (11)0.00000.36269 (19)0.0512 (6)
C60.19419 (8)0.1719 (3)0.33512 (14)0.0589 (4)
H60.21620.28670.35780.071*
C70.12865 (9)0.1712 (3)0.27244 (15)0.0636 (5)
H70.10580.28590.25230.076*
C80.09825 (11)0.00000.24084 (19)0.0581 (7)
C90.02669 (11)0.00000.21792 (19)0.0529 (6)
C100.08588 (12)0.00000.1385 (2)0.0570 (6)
H100.08390.00000.05260.068*
C110.14794 (11)0.00000.1964 (2)0.0525 (5)
C120.09188 (11)0.00000.3830 (2)0.0553 (6)
H120.09390.00000.46890.066*
Cl10.40498 (4)0.00000.00858 (5)0.0916 (3)
Cl20.22616 (3)0.00000.10747 (6)0.0829 (3)
N10.46804 (10)0.00000.22748 (18)0.0676 (6)
N20.40951 (9)0.00000.41739 (17)0.0572 (5)
N30.02774 (9)0.00000.33990 (16)0.0533 (5)
N40.15287 (9)0.00000.31826 (17)0.0566 (5)
O10.29285 (8)0.00000.42430 (14)0.0619 (5)
O20.03558 (8)0.00000.16482 (14)0.0793 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (11)0.0687 (14)0.0399 (11)0.0000.0027 (9)0.000
C20.0453 (12)0.0777 (15)0.0400 (11)0.0000.0022 (9)0.000
C30.0407 (12)0.109 (2)0.0495 (13)0.0000.0062 (10)0.000
C40.0421 (11)0.0573 (12)0.0403 (10)0.0000.0002 (8)0.000
C50.0397 (11)0.0797 (16)0.0345 (10)0.0000.0054 (8)0.000
C60.0543 (9)0.0708 (11)0.0520 (9)0.0059 (8)0.0062 (7)0.0019 (8)
C70.0528 (9)0.0824 (12)0.0561 (9)0.0116 (9)0.0073 (7)0.0109 (9)
C80.0390 (11)0.102 (2)0.0340 (10)0.0000.0072 (8)0.000
C90.0434 (11)0.0779 (15)0.0378 (11)0.0000.0067 (9)0.000
C100.0484 (12)0.0836 (16)0.0389 (11)0.0000.0011 (9)0.000
C110.0440 (11)0.0612 (14)0.0519 (12)0.0000.0009 (9)0.000
C120.0515 (13)0.0762 (16)0.0389 (11)0.0000.0078 (9)0.000
Cl10.0605 (4)0.1762 (9)0.0387 (4)0.0000.0072 (3)0.000
Cl20.0467 (4)0.1308 (7)0.0695 (5)0.0000.0106 (3)0.000
N10.0415 (10)0.1109 (17)0.0503 (11)0.0000.0013 (9)0.000
N20.0441 (10)0.0836 (14)0.0429 (9)0.0000.0057 (8)0.000
N30.0452 (10)0.0774 (13)0.0375 (9)0.0000.0050 (8)0.000
N40.0447 (10)0.0750 (13)0.0509 (11)0.0000.0095 (8)0.000
O10.0430 (8)0.1051 (13)0.0376 (7)0.0000.0019 (6)0.000
O20.0403 (9)0.1598 (19)0.0379 (8)0.0000.0040 (7)0.000
Geometric parameters (Å, º) top
C1—C21.363 (3)C7—C81.361 (2)
C1—C41.388 (3)C7—H70.9300
C1—H10.9300C8—C7i1.361 (2)
C2—N11.317 (3)C8—O21.410 (3)
C2—Cl11.725 (2)C9—N31.317 (3)
C3—N21.328 (3)C9—O21.348 (3)
C3—N11.329 (3)C9—C101.377 (3)
C3—H30.9300C10—C111.370 (3)
C4—N21.322 (3)C10—H100.9300
C4—O11.350 (2)C11—N41.323 (3)
C5—C6i1.364 (2)C11—Cl21.727 (2)
C5—C61.364 (2)C12—N41.322 (3)
C5—O11.411 (3)C12—N31.334 (3)
C6—C71.387 (2)C12—H120.9300
C6—H60.9300
C2—C1—C4114.92 (19)C7i—C8—C7122.4 (2)
C2—C1—H1122.5C7i—C8—O2118.70 (11)
C4—C1—H1122.5C7—C8—O2118.70 (11)
N1—C2—C1125.3 (2)N3—C9—O2119.27 (19)
N1—C2—Cl1115.94 (16)N3—C9—C10124.21 (19)
C1—C2—Cl1118.76 (17)O2—C9—C10116.52 (19)
N2—C3—N1128.1 (2)C11—C10—C9114.6 (2)
N2—C3—H3115.9C11—C10—H10122.7
N1—C3—H3115.9C9—C10—H10122.7
N2—C4—O1113.24 (18)N4—C11—C10124.4 (2)
N2—C4—C1122.83 (19)N4—C11—Cl2116.32 (17)
O1—C4—C1123.93 (19)C10—C11—Cl2119.24 (18)
C6i—C5—C6122.8 (2)N4—C12—N3127.8 (2)
C6i—C5—O1118.57 (10)N4—C12—H12116.1
C6—C5—O1118.57 (10)N3—C12—H12116.1
C5—C6—C7118.36 (17)C2—N1—C3113.6 (2)
C5—C6—H6120.8C4—N2—C3115.20 (19)
C7—C6—H6120.8C9—N3—C12114.53 (19)
C8—C7—C6118.97 (17)C12—N4—C11114.45 (18)
C8—C7—H7120.5C4—O1—C5117.07 (16)
C6—C7—H7120.5C9—O2—C8119.40 (16)
C4—C1—C2—N10.0C1—C4—N2—C30.0
C4—C1—C2—Cl1180.0N1—C3—N2—C40.0
C2—C1—C4—N20.0O2—C9—N3—C12180.0
C2—C1—C4—O1180.0C10—C9—N3—C120.0
C6i—C5—C6—C72.3 (3)N4—C12—N3—C90.0
O1—C5—C6—C7178.76 (14)N3—C12—N4—C110.0
C5—C6—C7—C80.1 (3)C10—C11—N4—C120.0
C6—C7—C8—C7i2.4 (3)Cl2—C11—N4—C12180.0
C6—C7—C8—O2172.75 (14)N2—C4—O1—C5180.0
N3—C9—C10—C110.0C1—C4—O1—C50.0
O2—C9—C10—C11180.0C6i—C5—O1—C490.53 (16)
C9—C10—C11—N40.0C6—C5—O1—C490.53 (16)
C9—C10—C11—Cl2180.0N3—C9—O2—C80.0
C1—C2—N1—C30.0C10—C9—O2—C8180.0
Cl1—C2—N1—C3180.0C7i—C8—O2—C992.31 (16)
N2—C3—N1—C20.0C7—C8—O2—C992.31 (16)
O1—C4—N2—C3180.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2ii0.932.573.463 (3)161
C3—H3···N2iii0.932.483.355 (3)157
Symmetry codes: (ii) x, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H8Cl2N4O2
Mr335.14
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)19.0760 (5), 6.9693 (2), 10.7893 (3)
β (°) 93.301 (3)
V3)1432.02 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)'] reflections
6918, 1372, 1156
Rint0.050
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.07
No. of reflections1372
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.573.463 (3)161.4
C3—H3···N2ii0.932.483.355 (3)156.6
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by Henan Education Government of China (grant No. 2006150023).

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burrroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. C. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–C128.  Web of Science CrossRef CAS Google Scholar
First citationHalim, M., Pillow, J. N. G., Samuel, I. D. W. & Burn, P. L. (1999). Adv. Mater. 11, 371–C374.  CrossRef CAS Google Scholar
First citationMaes, W., Amabilino, D. B. & Dehaen, W. (2003). Tetrahedron, 59, 3937–C3943.  Web of Science CrossRef CAS Google Scholar
First citationMeng, H. & Huang, W. J. (2000). Org. Chem. 65, 3894–C3901.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds