organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-But­­oxy-3-(2,4-di­chloro­phen­yl)-1-oxa­spiro­[4.5]dec-3-en-2-one

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 16 December 2008; accepted 7 January 2009; online 14 January 2009)

In the title compound, C19H22Cl2O3, the cyclo­hexane ring adopts a chair conformation. The furan ring plane forms dihedral angles of 81.88 (2) and 50.19 (3)°, respectively, with the benzene ring and the plane formed by the butyl C atoms. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Thomas et al. (2003[Thomas, B., Jordi, B. B., Reiner, F. & Ralf, N. (2003). Chimia, 57, 697-701.]). For synthetic information, see: Raeppel et al. (1998[Raeppel, S., Raeppl, F. & Suffert, J. (1998). Synlett, pp. 794-796.]); Sarcevic et al. (1973[Sarcevic, N., Zsindely, J. & Schmid, H. (1973). Helv. Chim. Acta, 56, 1457-1476.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22Cl2O3

  • Mr = 369.27

  • Orthorhombic, P b c a

  • a = 15.177 (3) Å

  • b = 13.735 (3) Å

  • c = 17.497 (4) Å

  • V = 3647.4 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 113 (2) K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.936, Tmax = 0.964

  • 23387 measured reflections

  • 3217 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.08

  • 3217 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.97 2.54 3.316 (3) 137
C18—H18⋯O1ii 0.93 2.49 3.370 (3) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was prepared as part of a project in search for new compounds with biological activity (Thomas et al., 2003). We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Thomas et al., 2003). The cyclohexane ring (C1—C6) adopts a chair conformation. The furan ring (O1/C1/C7/C12/C13) plane forms dihedral angles of 81.88 (2)° and 50.19 (3)° with the benzene ring (C14—C19) and the butyl group plane (C8—C11) respectively. In addition to van der Waals forces, the structure is stabilized by weak C—H···O hydrogen bonds.

Related literature top

For the biological activity of related compounds, see: Thomas et al. (2003). For synthetic information, see: Raeppel et al. (1998); Sarcevic et al. (1973).

Experimental top

3-(2,4-Dichlorophenyl)-2,4-dioxo-1-oxaspiro[4.5]decane 3.13 g (10.0 mmol), was suspended in a solution of sodium carbonate 0.54 g (5.1 mmol) in 20 ml of water in a flask equipped with stirrer, water separator and reflux condenser. Toluene (40 ml) was added after 0.5 h, the mixture was heated to dehydration to distill the toluene solvent. Then 1-bromobutane 1.51 g (11.0 mmol) and N,N-dimethylformamide(DMF) solvent (20 ml) were added while maintaining the temperature at 373K for 4 h. Upon cooling at room temperature water (20 ml) was added. The mixture was extracted with CH2Cl2 (15 ml) and the organic layer was washed with water and dried over sodium sulfate. The excess CH2Cl2 was removed on a water vacuum pump to obtain the oily product which was crystallized from methanol to afford the title compound 2.95 g (80% yield) (Raeppel et al., 1998; Sarcevic et al., 1973). Single crystals suitable for X-ray diffraction were obtained by recrystallization of the title compound from a mixture of acetone and methanol at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.
4-Butoxy-3-(2,4-dichlorophenyl)-1-oxaspiro[4.5]dec-3-en-2-one top
Crystal data top
C19H22Cl2O3F(000) = 1552
Mr = 369.27Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7182 reflections
a = 15.177 (3) Åθ = 2.3–27.5°
b = 13.735 (3) ŵ = 0.37 mm1
c = 17.497 (4) ÅT = 113 K
V = 3647.4 (13) Å3Platelet, colorless
Z = 80.18 × 0.14 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3217 independent reflections
Radiation source: rotating anode2536 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.090
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1718
Tmin = 0.936, Tmax = 0.964k = 1613
23387 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.1293P]
where P = (Fo2 + 2Fc2)/3
3217 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H22Cl2O3V = 3647.4 (13) Å3
Mr = 369.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.177 (3) ŵ = 0.37 mm1
b = 13.735 (3) ÅT = 113 K
c = 17.497 (4) Å0.18 × 0.14 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3217 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2536 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.964Rint = 0.090
23387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.08Δρmax = 0.60 e Å3
3217 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10283 (4)0.81909 (5)0.06309 (3)0.0362 (2)
Cl20.13817 (4)0.55405 (6)0.02124 (4)0.0402 (2)
O10.12744 (9)0.83740 (13)0.31227 (8)0.0267 (4)
O20.00361 (10)0.84602 (15)0.25290 (10)0.0382 (5)
O30.24825 (9)0.64650 (13)0.22585 (8)0.0234 (4)
C10.20839 (12)0.78176 (19)0.30321 (12)0.0211 (5)
C20.28018 (14)0.84967 (19)0.27409 (13)0.0244 (5)
H2A0.26080.87950.22670.029*
H2B0.33280.81200.26320.029*
C30.30279 (14)0.9295 (2)0.33171 (13)0.0299 (6)
H3A0.35070.96900.31210.036*
H3B0.25210.97140.33910.036*
C40.32958 (15)0.8847 (2)0.40787 (13)0.0323 (6)
H4A0.34010.93620.44470.039*
H4B0.38410.84890.40140.039*
C50.25880 (15)0.8165 (2)0.43855 (13)0.0307 (6)
H5A0.20670.85400.45130.037*
H5B0.27990.78590.48500.037*
C60.23407 (14)0.7375 (2)0.38050 (12)0.0259 (6)
H6A0.18510.69970.40020.031*
H6B0.28370.69380.37350.031*
C70.18423 (13)0.70785 (18)0.24397 (12)0.0195 (5)
C80.23904 (13)0.58949 (18)0.15675 (12)0.0225 (5)
H8A0.22000.63040.11470.027*
H8B0.19590.53820.16400.027*
C90.32863 (14)0.54638 (17)0.13996 (13)0.0241 (5)
H9A0.32470.50730.09390.029*
H9B0.34500.50350.18160.029*
C100.40051 (13)0.6221 (2)0.12948 (13)0.0275 (6)
H10A0.40780.65830.17670.033*
H10B0.38290.66770.08990.033*
C110.48797 (15)0.5757 (2)0.10750 (14)0.0380 (7)
H11A0.50130.52390.14250.057*
H11B0.53380.62380.10960.057*
H11C0.48400.55010.05660.057*
C120.10200 (13)0.72226 (19)0.21741 (12)0.0204 (5)
C130.06647 (13)0.80578 (19)0.25970 (12)0.0255 (6)
C140.04851 (13)0.67432 (18)0.15677 (12)0.0207 (5)
C150.04096 (13)0.71635 (18)0.08456 (12)0.0229 (5)
C160.01452 (14)0.67937 (18)0.02864 (12)0.0257 (5)
H160.01850.70850.01920.031*
C170.06371 (14)0.59783 (19)0.04641 (13)0.0267 (6)
C180.05625 (14)0.5511 (2)0.11608 (13)0.0285 (6)
H180.08810.49470.12620.034*
C190.00021 (13)0.59027 (18)0.17061 (12)0.0240 (5)
H190.00500.55950.21780.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (4)0.0282 (4)0.0329 (4)0.0146 (3)0.0045 (3)0.0049 (3)
Cl20.0339 (3)0.0451 (5)0.0417 (4)0.0047 (3)0.0147 (3)0.0141 (3)
O10.0154 (7)0.0332 (11)0.0316 (9)0.0046 (7)0.0038 (6)0.0143 (8)
O20.0195 (8)0.0453 (13)0.0499 (11)0.0089 (8)0.0087 (7)0.0205 (10)
O30.0208 (7)0.0267 (10)0.0229 (8)0.0088 (7)0.0027 (6)0.0074 (7)
C10.0151 (9)0.0250 (13)0.0231 (11)0.0041 (11)0.0005 (8)0.0033 (10)
C20.0188 (10)0.0277 (14)0.0269 (12)0.0003 (11)0.0027 (8)0.0018 (11)
C30.0214 (11)0.0281 (14)0.0402 (14)0.0038 (11)0.0049 (9)0.0051 (12)
C40.0254 (11)0.0382 (16)0.0334 (12)0.0002 (12)0.0081 (10)0.0073 (12)
C50.0309 (12)0.0395 (16)0.0215 (12)0.0013 (12)0.0045 (9)0.0062 (11)
C60.0252 (11)0.0301 (15)0.0224 (11)0.0021 (11)0.0006 (8)0.0013 (11)
C70.0180 (10)0.0211 (12)0.0195 (10)0.0015 (11)0.0022 (8)0.0001 (9)
C80.0202 (10)0.0250 (14)0.0224 (11)0.0031 (10)0.0031 (8)0.0061 (10)
C90.0232 (11)0.0238 (13)0.0254 (11)0.0027 (11)0.0010 (8)0.0069 (10)
C100.0255 (11)0.0309 (15)0.0259 (11)0.0015 (12)0.0007 (9)0.0018 (11)
C110.0247 (11)0.062 (2)0.0269 (12)0.0027 (14)0.0036 (9)0.0034 (13)
C120.0186 (10)0.0220 (13)0.0206 (11)0.0014 (11)0.0015 (8)0.0020 (10)
C130.0142 (10)0.0326 (15)0.0298 (12)0.0007 (11)0.0032 (8)0.0091 (11)
C140.0149 (9)0.0240 (12)0.0231 (11)0.0029 (10)0.0006 (8)0.0048 (10)
C150.0198 (9)0.0206 (12)0.0284 (11)0.0028 (11)0.0005 (8)0.0025 (10)
C160.0289 (11)0.0248 (14)0.0233 (12)0.0042 (11)0.0053 (9)0.0012 (10)
C170.0201 (10)0.0293 (14)0.0307 (12)0.0009 (11)0.0050 (9)0.0106 (11)
C180.0224 (11)0.0292 (14)0.0340 (13)0.0060 (11)0.0004 (9)0.0034 (11)
C190.0214 (10)0.0268 (14)0.0239 (11)0.0031 (11)0.0011 (8)0.0013 (10)
Geometric parameters (Å, º) top
Cl1—C151.736 (2)C7—C121.346 (3)
Cl2—C171.744 (2)C8—C91.512 (3)
O1—C131.375 (3)C8—H8A0.9700
O1—C11.455 (2)C8—H8B0.9700
O2—C131.204 (3)C9—C101.519 (3)
O3—C71.325 (3)C9—H9A0.9700
O3—C81.447 (3)C9—H9B0.9700
C1—C71.497 (3)C10—C111.522 (3)
C1—C21.522 (3)C10—H10A0.9700
C1—C61.533 (3)C10—H10B0.9700
C2—C31.529 (3)C11—H11A0.9600
C2—H2A0.9700C11—H11B0.9600
C2—H2B0.9700C11—H11C0.9600
C3—C41.523 (3)C12—C131.468 (3)
C3—H3A0.9700C12—C141.489 (3)
C3—H3B0.9700C14—C191.392 (3)
C4—C51.523 (4)C14—C151.394 (3)
C4—H4A0.9700C15—C161.387 (3)
C4—H4B0.9700C16—C171.381 (3)
C5—C61.533 (3)C16—H160.9300
C5—H5A0.9700C17—C181.382 (3)
C5—H5B0.9700C18—C191.387 (3)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—H190.9300
C13—O1—C1109.23 (17)C9—C8—H8B110.4
C7—O3—C8118.25 (16)H8A—C8—H8B108.6
O1—C1—C7103.00 (15)C8—C9—C10113.7 (2)
O1—C1—C2108.6 (2)C8—C9—H9A108.8
C7—C1—C2111.05 (17)C10—C9—H9A108.8
O1—C1—C6109.07 (16)C8—C9—H9B108.8
C7—C1—C6113.8 (2)C10—C9—H9B108.8
C2—C1—C6110.88 (17)H9A—C9—H9B107.7
C1—C2—C3112.31 (18)C9—C10—C11111.7 (2)
C1—C2—H2A109.1C9—C10—H10A109.3
C3—C2—H2A109.1C11—C10—H10A109.3
C1—C2—H2B109.1C9—C10—H10B109.3
C3—C2—H2B109.1C11—C10—H10B109.3
H2A—C2—H2B107.9H10A—C10—H10B107.9
C4—C3—C2110.3 (2)C10—C11—H11A109.5
C4—C3—H3A109.6C10—C11—H11B109.5
C2—C3—H3A109.6H11A—C11—H11B109.5
C4—C3—H3B109.6C10—C11—H11C109.5
C2—C3—H3B109.6H11A—C11—H11C109.5
H3A—C3—H3B108.1H11B—C11—H11C109.5
C3—C4—C5111.63 (18)C7—C12—C13106.35 (19)
C3—C4—H4A109.3C7—C12—C14133.3 (2)
C5—C4—H4A109.3C13—C12—C14120.29 (18)
C3—C4—H4B109.3O2—C13—O1121.0 (2)
C5—C4—H4B109.3O2—C13—C12129.3 (2)
H4A—C4—H4B108.0O1—C13—C12109.68 (18)
C4—C5—C6112.01 (19)C19—C14—C15117.2 (2)
C4—C5—H5A109.2C19—C14—C12122.2 (2)
C6—C5—H5A109.2C15—C14—C12120.5 (2)
C4—C5—H5B109.2C16—C15—C14122.5 (2)
C6—C5—H5B109.2C16—C15—Cl1118.24 (18)
H5A—C5—H5B107.9C14—C15—Cl1119.23 (17)
C5—C6—C1111.5 (2)C17—C16—C15117.8 (2)
C5—C6—H6A109.3C17—C16—H16121.1
C1—C6—H6A109.3C15—C16—H16121.1
C5—C6—H6B109.3C16—C17—C18122.1 (2)
C1—C6—H6B109.3C16—C17—Cl2118.49 (19)
H6A—C6—H6B108.0C18—C17—Cl2119.44 (19)
O3—C7—C12133.7 (2)C17—C18—C19118.5 (2)
O3—C7—C1114.69 (17)C17—C18—H18120.8
C12—C7—C1111.49 (19)C19—C18—H18120.8
O3—C8—C9106.70 (16)C18—C19—C14121.9 (2)
O3—C8—H8A110.4C18—C19—H19119.1
C9—C8—H8A110.4C14—C19—H19119.1
O3—C8—H8B110.4
C13—O1—C1—C75.1 (2)O3—C7—C12—C140.6 (5)
C13—O1—C1—C2112.8 (2)C1—C7—C12—C14176.3 (2)
C13—O1—C1—C6126.3 (2)C1—O1—C13—O2174.7 (2)
O1—C1—C2—C364.3 (2)C1—O1—C13—C124.5 (3)
C7—C1—C2—C3176.88 (19)C7—C12—C13—O2177.3 (3)
C6—C1—C2—C355.5 (3)C14—C12—C13—O20.8 (4)
C1—C2—C3—C456.3 (2)C7—C12—C13—O11.9 (3)
C2—C3—C4—C555.4 (3)C14—C12—C13—O1179.97 (19)
C3—C4—C5—C654.8 (3)C7—C12—C14—C1984.9 (3)
C4—C5—C6—C153.5 (3)C13—C12—C14—C1997.6 (3)
O1—C1—C6—C566.1 (2)C7—C12—C14—C1599.4 (3)
C7—C1—C6—C5179.54 (18)C13—C12—C14—C1578.1 (3)
C2—C1—C6—C553.5 (2)C19—C14—C15—C162.1 (3)
C8—O3—C7—C1210.9 (4)C12—C14—C15—C16173.8 (2)
C8—O3—C7—C1164.6 (2)C19—C14—C15—Cl1178.01 (16)
O1—C1—C7—O3179.45 (18)C12—C14—C15—Cl16.0 (3)
C2—C1—C7—O364.5 (3)C14—C15—C16—C170.1 (3)
C6—C1—C7—O361.5 (2)Cl1—C15—C16—C17179.75 (17)
O1—C1—C7—C124.0 (2)C15—C16—C17—C182.6 (4)
C2—C1—C7—C12112.1 (2)C15—C16—C17—Cl2176.63 (17)
C6—C1—C7—C12122.0 (2)C16—C17—C18—C192.8 (4)
C7—O3—C8—C9166.18 (19)Cl2—C17—C18—C19176.49 (18)
O3—C8—C9—C1058.8 (2)C17—C18—C19—C140.4 (4)
C8—C9—C10—C11176.20 (18)C15—C14—C19—C182.0 (3)
O3—C7—C12—C13177.1 (2)C12—C14—C19—C18173.9 (2)
C1—C7—C12—C131.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.543.316 (3)137
C18—H18···O1ii0.932.493.370 (3)159
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H22Cl2O3
Mr369.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)15.177 (3), 13.735 (3), 17.497 (4)
V3)3647.4 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.936, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
23387, 3217, 2536
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.08
No. of reflections3217
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.543.316 (3)136.7
C18—H18···O1ii0.932.493.370 (3)158.5
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+1/2.
 

References

First citationRaeppel, S., Raeppl, F. & Suffert, J. (1998). Synlett, pp. 794-796.  CrossRef Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSarcevic, N., Zsindely, J. & Schmid, H. (1973). Helv. Chim. Acta, 56, 1457–1476.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, B., Jordi, B. B., Reiner, F. & Ralf, N. (2003). Chimia, 57, 697–701.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds