organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o407-o408

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methyl­quinoline

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 18 December 2008; accepted 24 January 2009; online 28 January 2009)

In the title mol­ecule, C13H15N3O2, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methyl­isoquinoline unit is 85.21 (5)°. The conformation of the mol­ecule is influenced by bifurcated N—H⋯(O,O) and N—H⋯N intra­molecular hydrogen bonds. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming extended chains along [001].

Related literature

For general background to hydrazine compounds, see: Broadhurst et al. (2001[Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.]); Behrens (1999[Behrens, C. H. (1999). US Patent No. 4 942 163.]); Broadhurst (1991[Broadhurst, M. D. (1991). US Patent No. 5 070 097.]); Chao et al. (1999[Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.]); Kametani (1968[Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo, Amsterdam: Hirokawa, Elsevier.]). For related crystal structures, see: Yang et al. (2008[Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97-x98.]); Choudhury & Guru Row (2006[Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265-274.]); Choudhury et al. (2002[Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.]); Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]); Cho et al. (2002[Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953-2961.]); Manivel et al. (2009[Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137-o138.]), and references therein. For bond-length data, see: Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.])

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O2

  • Mr = 245.28

  • Monoclinic, P 21 /c

  • a = 13.1909 (17) Å

  • b = 10.1165 (13) Å

  • c = 9.7805 (13) Å

  • β = 109.956 (2)°

  • V = 1226.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.30 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.987

  • 8929 measured reflections

  • 2279 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.06

  • 2279 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.843 (19) 2.372 (18) 2.9329 (17) 124.5 (15)
N2—H2N⋯O2 0.843 (19) 2.653 (18) 3.0968 (19) 114.3 (14)
N3—H3NA⋯N1 0.94 (2) 2.35 (2) 2.691 (2) 100.9 (15)
N3—H3NB⋯O2i 0.92 (2) 2.44 (2) 3.207 (2) 141.2 (19)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound (I), belongs to the quinoline class. Quinolines and quinolinones are an integral part of many naturally occurring fused heterocycles and find application in synthetic and pharmaceutical chemistry (Kametani, 1968). Isoquinolinones and isoquinolineamines have been reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-substituted isoquinolines have potent use in medicine (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001; Choudhury, et al., 2002; Choudhury & Guru Row, 2006; Yang, et al., 2008). Due to the importance of quinoline derivates (Cho et al., 2002) and in continuous of our research on quinolines and isoquinoline derivatives (Hathwar et al., 2008; Manivel et al., 2009) we present here crystal structure of the title compound.

In (I) the dihedral angle between 1,3-dioxolane moiety and 2 hyrazino-7-methyl isoquinoline unit is 85.21 (5)°. All bond lengths (Allen et al., 1987) and angles are within normal ranges. The conformation of the molecule is influenced by N—H···O and N—H···N intramolecular hydrogen bonds whereas the crystal structure is stabilized by intermolecular N—H···O hydrogen bonds forming exteded chains along [001].

Related literature top

For general background to hydrazine compounds, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Kametani (1968). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009), and references therein. For bond-length data, see: Allen et al., 1987)

Experimental top

A solution of 2-chloro (3-(1,3-dioxolan-2-yl)-7-methylquinoline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals were obtained by recrystalization of (I) from DMSO.

Refinement top

All H atoms positioned geometrically and refined using a riding model with bond lengths C—H = 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted.
3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methylquinoline top
Crystal data top
C13H15N3O2F(000) = 520
Mr = 245.28Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 948 reflections
a = 13.1909 (17) Åθ = 1.8–24.6°
b = 10.1165 (13) ŵ = 0.09 mm1
c = 9.7805 (13) ÅT = 290 K
β = 109.956 (2)°Block, brown
V = 1226.8 (3) Å30.30 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2279 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.942, Tmax = 0.987k = 1012
8929 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.072P)2 + 0.1104P]
where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H15N3O2V = 1226.8 (3) Å3
Mr = 245.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1909 (17) ŵ = 0.09 mm1
b = 10.1165 (13) ÅT = 290 K
c = 9.7805 (13) Å0.30 × 0.21 × 0.14 mm
β = 109.956 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2279 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1699 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.987Rint = 0.018
8929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
2279 reflectionsΔρmin = 0.14 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10652 (9)0.42297 (12)0.28334 (11)0.0621 (4)
O20.09919 (10)0.22186 (13)0.18872 (12)0.0701 (4)
N10.32415 (10)0.45872 (13)0.15262 (13)0.0524 (4)
N20.14264 (11)0.45599 (16)0.02767 (15)0.0597 (4)
N30.12501 (13)0.53613 (19)0.13548 (18)0.0664 (4)
C10.24495 (12)0.42351 (15)0.03448 (15)0.0464 (4)
C20.26133 (12)0.35152 (15)0.08326 (15)0.0480 (4)
C30.36404 (13)0.31857 (15)0.06896 (17)0.0550 (4)
H3A0.37720.27260.14350.066*
C40.56033 (15)0.32091 (18)0.0793 (2)0.0688 (5)
H4A0.57780.27500.00800.083*
C50.64009 (14)0.35734 (19)0.2051 (2)0.0732 (6)
H5A0.71110.33440.21860.088*
C60.61719 (14)0.4286 (2)0.3145 (2)0.0662 (5)
C70.51244 (13)0.46184 (19)0.29207 (17)0.0615 (5)
H7A0.49660.51070.36280.074*
C80.42773 (12)0.42464 (15)0.16556 (16)0.0496 (4)
C90.45173 (12)0.35270 (15)0.05728 (17)0.0533 (4)
C100.70689 (16)0.4661 (3)0.4525 (2)0.0949 (8)
H10A0.67670.49360.52440.142*
H10B0.74810.53720.43290.142*
H10C0.75300.39110.48820.142*
C110.17109 (13)0.31376 (16)0.21833 (17)0.0540 (4)
H11A0.20100.27450.28790.065*
C120.00343 (14)0.2421 (2)0.2979 (2)0.0782 (6)
H12A0.05880.25400.25440.094*
H12B0.02280.16750.36400.094*
C130.00918 (15)0.3653 (2)0.37670 (19)0.0764 (6)
H13A0.01460.34400.47060.092*
H13B0.05130.42470.39100.092*
H2N0.0904 (15)0.4447 (17)0.050 (2)0.064 (5)*
H3NB0.1453 (18)0.484 (2)0.218 (2)0.095 (7)*
H3NA0.1821 (17)0.597 (2)0.158 (2)0.078 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0577 (7)0.0724 (8)0.0494 (6)0.0026 (6)0.0095 (5)0.0034 (5)
O20.0667 (8)0.0722 (8)0.0642 (7)0.0201 (6)0.0130 (6)0.0040 (6)
N10.0475 (8)0.0647 (9)0.0438 (7)0.0047 (6)0.0141 (6)0.0015 (6)
N20.0476 (8)0.0838 (11)0.0443 (7)0.0051 (7)0.0114 (6)0.0113 (7)
N30.0626 (10)0.0782 (11)0.0586 (9)0.0087 (9)0.0211 (7)0.0131 (9)
C10.0467 (8)0.0495 (9)0.0426 (8)0.0001 (7)0.0145 (7)0.0037 (6)
C20.0497 (9)0.0465 (8)0.0470 (8)0.0006 (7)0.0153 (7)0.0012 (6)
C30.0580 (10)0.0492 (9)0.0589 (9)0.0019 (7)0.0214 (8)0.0077 (7)
C40.0566 (10)0.0607 (11)0.0890 (13)0.0055 (8)0.0245 (9)0.0053 (10)
C50.0424 (9)0.0707 (12)0.0974 (14)0.0022 (8)0.0122 (9)0.0105 (11)
C60.0518 (10)0.0774 (13)0.0628 (11)0.0136 (9)0.0108 (8)0.0122 (9)
C70.0526 (10)0.0785 (12)0.0512 (9)0.0134 (8)0.0148 (8)0.0024 (8)
C80.0480 (9)0.0526 (9)0.0470 (8)0.0057 (7)0.0147 (7)0.0065 (7)
C90.0474 (9)0.0470 (9)0.0629 (10)0.0001 (7)0.0156 (7)0.0035 (7)
C100.0550 (11)0.138 (2)0.0771 (13)0.0265 (12)0.0040 (10)0.0078 (13)
C110.0531 (9)0.0597 (10)0.0492 (9)0.0007 (7)0.0175 (7)0.0083 (7)
C120.0554 (11)0.0901 (15)0.0852 (13)0.0112 (10)0.0188 (10)0.0274 (12)
C130.0565 (11)0.1135 (17)0.0500 (9)0.0012 (11)0.0065 (8)0.0119 (11)
Geometric parameters (Å, º) top
O1—C111.4074 (19)C4—H4A0.9300
O1—C131.422 (2)C5—C61.406 (3)
O2—C121.424 (2)C5—H5A0.9300
O2—C111.427 (2)C6—C71.365 (3)
N1—C11.3151 (18)C6—C101.509 (2)
N1—C81.372 (2)C7—C81.406 (2)
N2—C11.3683 (19)C7—H7A0.9300
N2—N31.411 (2)C8—C91.407 (2)
N2—H2N0.843 (19)C10—H10A0.9600
N3—H3NB0.92 (2)C10—H10B0.9600
N3—H3NA0.94 (2)C10—H10C0.9600
C1—C21.440 (2)C11—H11A0.9800
C2—C31.355 (2)C12—C131.504 (3)
C2—C111.495 (2)C12—H12A0.9700
C3—C91.417 (2)C12—H12B0.9700
C3—H3A0.9300C13—H13A0.9700
C4—C51.368 (3)C13—H13B0.9700
C4—C91.411 (2)
C11—O1—C13104.05 (14)N1—C8—C7118.75 (15)
C12—O2—C11106.35 (14)N1—C8—C9122.22 (14)
C1—N1—C8118.70 (13)C7—C8—C9119.03 (15)
C1—N2—N3120.87 (13)C8—C9—C4118.70 (15)
C1—N2—H2N120.1 (12)C8—C9—C3117.09 (14)
N3—N2—H2N117.4 (12)C4—C9—C3124.20 (16)
N2—N3—H3NB104.8 (14)C6—C10—H10A109.5
N2—N3—H3NA102.9 (12)C6—C10—H10B109.5
H3NB—N3—H3NA101.6 (18)H10A—C10—H10B109.5
N1—C1—N2116.89 (14)C6—C10—H10C109.5
N1—C1—C2123.28 (14)H10A—C10—H10C109.5
N2—C1—C2119.82 (13)H10B—C10—H10C109.5
C3—C2—C1117.35 (13)O1—C11—O2105.16 (13)
C3—C2—C11119.66 (14)O1—C11—C2112.04 (13)
C1—C2—C11122.99 (13)O2—C11—C2111.79 (13)
C2—C3—C9121.34 (15)O1—C11—H11A109.2
C2—C3—H3A119.3O2—C11—H11A109.2
C9—C3—H3A119.3C2—C11—H11A109.2
C5—C4—C9120.33 (18)O2—C12—C13105.10 (14)
C5—C4—H4A119.8O2—C12—H12A110.7
C9—C4—H4A119.8C13—C12—H12A110.7
C4—C5—C6121.55 (17)O2—C12—H12B110.7
C4—C5—H5A119.2C13—C12—H12B110.7
C6—C5—H5A119.2H12A—C12—H12B108.8
C7—C6—C5118.21 (16)O1—C13—C12104.14 (14)
C7—C6—C10121.57 (19)O1—C13—H13A110.9
C5—C6—C10120.22 (17)C12—C13—H13A110.9
C6—C7—C8122.15 (17)O1—C13—H13B110.9
C6—C7—H7A118.9C12—C13—H13B110.9
C8—C7—H7A118.9H13A—C13—H13B108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.843 (19)2.372 (18)2.9329 (17)124.5 (15)
N2—H2N···O20.843 (19)2.653 (18)3.0968 (19)114.3 (14)
N3—H3NA···N10.94 (2)2.35 (2)2.691 (2)100.9 (15)
N3—H3NB···O2i0.92 (2)2.44 (2)3.207 (2)141.2 (19)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15N3O2
Mr245.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)13.1909 (17), 10.1165 (13), 9.7805 (13)
β (°) 109.956 (2)
V3)1226.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8929, 2279, 1699
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.06
No. of reflections2279
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.843 (19)2.372 (18)2.9329 (17)124.5 (15)
N2—H2N···O20.843 (19)2.653 (18)3.0968 (19)114.3 (14)
N3—H3NA···N10.94 (2)2.35 (2)2.691 (2)100.9 (15)
N3—H3NB···O2i0.92 (2)2.44 (2)3.207 (2)141.2 (19)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBehrens, C. H. (1999). US Patent No. 4 942 163.  Google Scholar
First citationBroadhurst, M. D. (1991). US Patent No. 5 070 097.  Google Scholar
First citationBroadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873.  Web of Science CrossRef Google Scholar
First citationCho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953–2961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo, Amsterdam: Hirokawa, Elsevier.  Google Scholar
First citationManivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o407-o408
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds