organic compounds
3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methylquinoline
aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in
In the title molecule, C13H15N3O2, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methylisoquinoline unit is 85.21 (5)°. The conformation of the molecule is influenced by bifurcated N—H⋯(O,O) and N—H⋯N intramolecular hydrogen bonds. In the molecules are linked via intermolecular N—H⋯O hydrogen bonds, forming extended chains along [001].
Related literature
For general background to hydrazine compounds, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Kametani (1968). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009), and references therein. For bond-length data, see: Allen et al., 1987)
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809003031/lh2748sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003031/lh2748Isup2.hkl
A solution of 2-chloro (3-(1,3-dioxolan-2-yl)-7-methylquinoline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals were obtained by recrystalization of (I) from DMSO.
All H atoms positioned geometrically and refined using a riding model with bond lengths C—H = 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).C13H15N3O2 | F(000) = 520 |
Mr = 245.28 | Dx = 1.328 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 948 reflections |
a = 13.1909 (17) Å | θ = 1.8–24.6° |
b = 10.1165 (13) Å | µ = 0.09 mm−1 |
c = 9.7805 (13) Å | T = 290 K |
β = 109.956 (2)° | Block, brown |
V = 1226.8 (3) Å3 | 0.30 × 0.21 × 0.14 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2279 independent reflections |
Radiation source: fine-focus sealed tube | 1699 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 25.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→15 |
Tmin = 0.942, Tmax = 0.987 | k = −10→12 |
8929 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.072P)2 + 0.1104P] where P = (Fo2 + 2Fc2)/3 |
2279 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C13H15N3O2 | V = 1226.8 (3) Å3 |
Mr = 245.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.1909 (17) Å | µ = 0.09 mm−1 |
b = 10.1165 (13) Å | T = 290 K |
c = 9.7805 (13) Å | 0.30 × 0.21 × 0.14 mm |
β = 109.956 (2)° |
Bruker SMART CCD area-detector diffractometer | 2279 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1699 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.987 | Rint = 0.018 |
8929 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.19 e Å−3 |
2279 reflections | Δρmin = −0.14 e Å−3 |
176 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.10652 (9) | 0.42297 (12) | −0.28334 (11) | 0.0621 (4) | |
O2 | 0.09919 (10) | 0.22186 (13) | −0.18872 (12) | 0.0701 (4) | |
N1 | 0.32415 (10) | 0.45872 (13) | 0.15262 (13) | 0.0524 (4) | |
N2 | 0.14264 (11) | 0.45599 (16) | 0.02767 (15) | 0.0597 (4) | |
N3 | 0.12501 (13) | 0.53613 (19) | 0.13548 (18) | 0.0664 (4) | |
C1 | 0.24495 (12) | 0.42351 (15) | 0.03448 (15) | 0.0464 (4) | |
C2 | 0.26133 (12) | 0.35152 (15) | −0.08326 (15) | 0.0480 (4) | |
C3 | 0.36404 (13) | 0.31857 (15) | −0.06896 (17) | 0.0550 (4) | |
H3A | 0.3772 | 0.2726 | −0.1435 | 0.066* | |
C4 | 0.56033 (15) | 0.32091 (18) | 0.0793 (2) | 0.0688 (5) | |
H4A | 0.5778 | 0.2750 | 0.0080 | 0.083* | |
C5 | 0.64009 (14) | 0.35734 (19) | 0.2051 (2) | 0.0732 (6) | |
H5A | 0.7111 | 0.3344 | 0.2186 | 0.088* | |
C6 | 0.61719 (14) | 0.4286 (2) | 0.3145 (2) | 0.0662 (5) | |
C7 | 0.51244 (13) | 0.46184 (19) | 0.29207 (17) | 0.0615 (5) | |
H7A | 0.4966 | 0.5107 | 0.3628 | 0.074* | |
C8 | 0.42773 (12) | 0.42464 (15) | 0.16556 (16) | 0.0496 (4) | |
C9 | 0.45173 (12) | 0.35270 (15) | 0.05728 (17) | 0.0533 (4) | |
C10 | 0.70689 (16) | 0.4661 (3) | 0.4525 (2) | 0.0949 (8) | |
H10A | 0.6767 | 0.4936 | 0.5244 | 0.142* | |
H10B | 0.7481 | 0.5372 | 0.4329 | 0.142* | |
H10C | 0.7530 | 0.3911 | 0.4882 | 0.142* | |
C11 | 0.17109 (13) | 0.31376 (16) | −0.21833 (17) | 0.0540 (4) | |
H11A | 0.2010 | 0.2745 | −0.2879 | 0.065* | |
C12 | −0.00343 (14) | 0.2421 (2) | −0.2979 (2) | 0.0782 (6) | |
H12A | −0.0588 | 0.2540 | −0.2544 | 0.094* | |
H12B | −0.0228 | 0.1675 | −0.3640 | 0.094* | |
C13 | 0.00918 (15) | 0.3653 (2) | −0.37670 (19) | 0.0764 (6) | |
H13A | 0.0146 | 0.3440 | −0.4706 | 0.092* | |
H13B | −0.0513 | 0.4247 | −0.3910 | 0.092* | |
H2N | 0.0904 (15) | 0.4447 (17) | −0.050 (2) | 0.064 (5)* | |
H3NB | 0.1453 (18) | 0.484 (2) | 0.218 (2) | 0.095 (7)* | |
H3NA | 0.1821 (17) | 0.597 (2) | 0.158 (2) | 0.078 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0577 (7) | 0.0724 (8) | 0.0494 (6) | 0.0026 (6) | 0.0095 (5) | 0.0034 (5) |
O2 | 0.0667 (8) | 0.0722 (8) | 0.0642 (7) | −0.0201 (6) | 0.0130 (6) | −0.0040 (6) |
N1 | 0.0475 (8) | 0.0647 (9) | 0.0438 (7) | −0.0047 (6) | 0.0141 (6) | −0.0015 (6) |
N2 | 0.0476 (8) | 0.0838 (11) | 0.0443 (7) | 0.0051 (7) | 0.0114 (6) | −0.0113 (7) |
N3 | 0.0626 (10) | 0.0782 (11) | 0.0586 (9) | 0.0087 (9) | 0.0211 (7) | −0.0131 (9) |
C1 | 0.0467 (8) | 0.0495 (9) | 0.0426 (8) | 0.0001 (7) | 0.0145 (7) | 0.0037 (6) |
C2 | 0.0497 (9) | 0.0465 (8) | 0.0470 (8) | 0.0006 (7) | 0.0153 (7) | 0.0012 (6) |
C3 | 0.0580 (10) | 0.0492 (9) | 0.0589 (9) | 0.0019 (7) | 0.0214 (8) | −0.0077 (7) |
C4 | 0.0566 (10) | 0.0607 (11) | 0.0890 (13) | 0.0055 (8) | 0.0245 (9) | −0.0053 (10) |
C5 | 0.0424 (9) | 0.0707 (12) | 0.0974 (14) | 0.0022 (8) | 0.0122 (9) | 0.0105 (11) |
C6 | 0.0518 (10) | 0.0774 (13) | 0.0628 (11) | −0.0136 (9) | 0.0108 (8) | 0.0122 (9) |
C7 | 0.0526 (10) | 0.0785 (12) | 0.0512 (9) | −0.0134 (8) | 0.0148 (8) | 0.0024 (8) |
C8 | 0.0480 (9) | 0.0526 (9) | 0.0470 (8) | −0.0057 (7) | 0.0147 (7) | 0.0065 (7) |
C9 | 0.0474 (9) | 0.0470 (9) | 0.0629 (10) | 0.0001 (7) | 0.0156 (7) | 0.0035 (7) |
C10 | 0.0550 (11) | 0.138 (2) | 0.0771 (13) | −0.0265 (12) | 0.0040 (10) | 0.0078 (13) |
C11 | 0.0531 (9) | 0.0597 (10) | 0.0492 (9) | −0.0007 (7) | 0.0175 (7) | −0.0083 (7) |
C12 | 0.0554 (11) | 0.0901 (15) | 0.0852 (13) | −0.0112 (10) | 0.0188 (10) | −0.0274 (12) |
C13 | 0.0565 (11) | 0.1135 (17) | 0.0500 (9) | 0.0012 (11) | 0.0065 (8) | −0.0119 (11) |
O1—C11 | 1.4074 (19) | C4—H4A | 0.9300 |
O1—C13 | 1.422 (2) | C5—C6 | 1.406 (3) |
O2—C12 | 1.424 (2) | C5—H5A | 0.9300 |
O2—C11 | 1.427 (2) | C6—C7 | 1.365 (3) |
N1—C1 | 1.3151 (18) | C6—C10 | 1.509 (2) |
N1—C8 | 1.372 (2) | C7—C8 | 1.406 (2) |
N2—C1 | 1.3683 (19) | C7—H7A | 0.9300 |
N2—N3 | 1.411 (2) | C8—C9 | 1.407 (2) |
N2—H2N | 0.843 (19) | C10—H10A | 0.9600 |
N3—H3NB | 0.92 (2) | C10—H10B | 0.9600 |
N3—H3NA | 0.94 (2) | C10—H10C | 0.9600 |
C1—C2 | 1.440 (2) | C11—H11A | 0.9800 |
C2—C3 | 1.355 (2) | C12—C13 | 1.504 (3) |
C2—C11 | 1.495 (2) | C12—H12A | 0.9700 |
C3—C9 | 1.417 (2) | C12—H12B | 0.9700 |
C3—H3A | 0.9300 | C13—H13A | 0.9700 |
C4—C5 | 1.368 (3) | C13—H13B | 0.9700 |
C4—C9 | 1.411 (2) | ||
C11—O1—C13 | 104.05 (14) | N1—C8—C7 | 118.75 (15) |
C12—O2—C11 | 106.35 (14) | N1—C8—C9 | 122.22 (14) |
C1—N1—C8 | 118.70 (13) | C7—C8—C9 | 119.03 (15) |
C1—N2—N3 | 120.87 (13) | C8—C9—C4 | 118.70 (15) |
C1—N2—H2N | 120.1 (12) | C8—C9—C3 | 117.09 (14) |
N3—N2—H2N | 117.4 (12) | C4—C9—C3 | 124.20 (16) |
N2—N3—H3NB | 104.8 (14) | C6—C10—H10A | 109.5 |
N2—N3—H3NA | 102.9 (12) | C6—C10—H10B | 109.5 |
H3NB—N3—H3NA | 101.6 (18) | H10A—C10—H10B | 109.5 |
N1—C1—N2 | 116.89 (14) | C6—C10—H10C | 109.5 |
N1—C1—C2 | 123.28 (14) | H10A—C10—H10C | 109.5 |
N2—C1—C2 | 119.82 (13) | H10B—C10—H10C | 109.5 |
C3—C2—C1 | 117.35 (13) | O1—C11—O2 | 105.16 (13) |
C3—C2—C11 | 119.66 (14) | O1—C11—C2 | 112.04 (13) |
C1—C2—C11 | 122.99 (13) | O2—C11—C2 | 111.79 (13) |
C2—C3—C9 | 121.34 (15) | O1—C11—H11A | 109.2 |
C2—C3—H3A | 119.3 | O2—C11—H11A | 109.2 |
C9—C3—H3A | 119.3 | C2—C11—H11A | 109.2 |
C5—C4—C9 | 120.33 (18) | O2—C12—C13 | 105.10 (14) |
C5—C4—H4A | 119.8 | O2—C12—H12A | 110.7 |
C9—C4—H4A | 119.8 | C13—C12—H12A | 110.7 |
C4—C5—C6 | 121.55 (17) | O2—C12—H12B | 110.7 |
C4—C5—H5A | 119.2 | C13—C12—H12B | 110.7 |
C6—C5—H5A | 119.2 | H12A—C12—H12B | 108.8 |
C7—C6—C5 | 118.21 (16) | O1—C13—C12 | 104.14 (14) |
C7—C6—C10 | 121.57 (19) | O1—C13—H13A | 110.9 |
C5—C6—C10 | 120.22 (17) | C12—C13—H13A | 110.9 |
C6—C7—C8 | 122.15 (17) | O1—C13—H13B | 110.9 |
C6—C7—H7A | 118.9 | C12—C13—H13B | 110.9 |
C8—C7—H7A | 118.9 | H13A—C13—H13B | 108.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1 | 0.843 (19) | 2.372 (18) | 2.9329 (17) | 124.5 (15) |
N2—H2N···O2 | 0.843 (19) | 2.653 (18) | 3.0968 (19) | 114.3 (14) |
N3—H3NA···N1 | 0.94 (2) | 2.35 (2) | 2.691 (2) | 100.9 (15) |
N3—H3NB···O2i | 0.92 (2) | 2.44 (2) | 3.207 (2) | 141.2 (19) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H15N3O2 |
Mr | 245.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 13.1909 (17), 10.1165 (13), 9.7805 (13) |
β (°) | 109.956 (2) |
V (Å3) | 1226.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.942, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8929, 2279, 1699 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.129, 1.06 |
No. of reflections | 2279 |
No. of parameters | 176 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.14 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1 | 0.843 (19) | 2.372 (18) | 2.9329 (17) | 124.5 (15) |
N2—H2N···O2 | 0.843 (19) | 2.653 (18) | 3.0968 (19) | 114.3 (14) |
N3—H3NA···N1 | 0.94 (2) | 2.35 (2) | 2.691 (2) | 100.9 (15) |
N3—H3NB···O2i | 0.92 (2) | 2.44 (2) | 3.207 (2) | 141.2 (19) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Behrens, C. H. (1999). US Patent No. 4 942 163. Google Scholar
Broadhurst, M. D. (1991). US Patent No. 5 070 097. Google Scholar
Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860–3873. Web of Science CrossRef Google Scholar
Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953–2961. Web of Science CSD CrossRef PubMed CAS Google Scholar
Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274. Web of Science CSD CrossRef CAS Google Scholar
Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71–77. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo, Amsterdam: Hirokawa, Elsevier. Google Scholar
Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), belongs to the quinoline class. Quinolines and quinolinones are an integral part of many naturally occurring fused heterocycles and find application in synthetic and pharmaceutical chemistry (Kametani, 1968). Isoquinolinones and isoquinolineamines have been reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-substituted isoquinolines have potent use in medicine (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001; Choudhury, et al., 2002; Choudhury & Guru Row, 2006; Yang, et al., 2008). Due to the importance of quinoline derivates (Cho et al., 2002) and in continuous of our research on quinolines and isoquinoline derivatives (Hathwar et al., 2008; Manivel et al., 2009) we present here crystal structure of the title compound.
In (I) the dihedral angle between 1,3-dioxolane moiety and 2 hyrazino-7-methyl isoquinoline unit is 85.21 (5)°. All bond lengths (Allen et al., 1987) and angles are within normal ranges. The conformation of the molecule is influenced by N—H···O and N—H···N intramolecular hydrogen bonds whereas the crystal structure is stabilized by intermolecular N—H···O hydrogen bonds forming exteded chains along [001].