metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(5-methyl-1H-pyrazole-3-carboxyl­ato)(4-nitro­benzoato)copper(II)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 23 December 2008; accepted 14 January 2009; online 23 January 2009)

In the title complex, [Cu(C7H4NO4)(C5H5N2O2)(H2O)2], the CuII ion is coordinated in a slightly distorted square-pyramidal enviroment. The basal plane is formed by an N atom and an O atom from a 5-methyl-1H-pyrazole-3-carboxyl­ate ligand and by two O atoms from two water ligands. The apical position is occupied by a carboxylate O atom from a 4-nitro­benzoate ligand. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link complex moleclues, forming extended chains parallel to the a axis.

Related literature

For background information, see: Montoya et al. (2007[Montoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625-637.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4NO4)(C5H5N2O2)(H2O)2]

  • Mr = 390.79

  • Triclinic, [P \overline 1]

  • a = 6.965 (1) Å

  • b = 9.1860 (13) Å

  • c = 12.4220 (16) Å

  • α = 96.633 (1)°

  • β = 105.116 (2)°

  • γ = 103.978 (2)°

  • V = 730.91 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 298 (2) K

  • 0.40 × 0.21 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.577, Tmax = 0.748

  • 3783 measured reflections

  • 2526 independent reflections

  • 2249 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.04

  • 2526 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O8 1.9344 (17)
Cu1—O7 1.9489 (17)
Cu1—N1 1.970 (2)
Cu1—O1 1.9811 (16)
Cu1—O3 2.3164 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2i 0.85 1.96 2.799 (2) 173
O7—H7B⋯O3ii 0.84 1.83 2.631 (2) 157
O8—H8A⋯O1iii 0.85 1.97 2.803 (3) 165
O8—H8B⋯O4ii 0.85 1.78 2.582 (2) 156
N2—H2⋯O2i 0.86 1.97 2.781 (3) 157
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+2; (iii) -x+1, -y, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemical and pharmacological properties of pyrazoles have been investigated extensively, owing to their chelating ability with metal ions and their potentially beneficial chemical and biological activities (Montoya et al., 2007.) As part of our studies on the synthesis and characterization of these types of compounds, we report here the synthesis and crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The Cu atom is five-coordinated by four O atoms and one N atom. The basal plane is formed by an N atom and an O atom from a 5-methyl-1H-pyrazole-3-carboxylato ligand and two O atoms from coordinated water molecules. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Fig. 2) link complex molecules, to form extended chains parallel to the a axis. The coordinated water molecules act as hydrogen donors for symmetry related carboxyl O atoms (see Table 2). In addition, the crystal structure contains various π-π stacking interactions involving the C7-C12, N1/N2/C2-C4 and Cu1/O1/C1/C2/N1 rings with a range of centroid-to-centroid distances of 3.265 (1)-3.849 (1)Å (see Fig. 3).

Related literature top

For background information, see: Montoya et al. (2007).

Experimental top

5-methyl-1H-pyrazole-3-carboxylic acid,4-nitrobenzoic acid and CuCl2.6H2O were available commercially and were used without further purification. Equimolar amounts of 5-methyl-1H-pyrazole-3-carboxylic acid (0.5 mmol, 63.02 mg) and 4-nitrobenzoic acid (0.5 mmol, 83.51 mg) were dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, to this solution was added CuCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, blue prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 36.82; H, 3.38; N, 10.65%. calc. for C12H13CuN3O8: C, 36.88; H, 3.35; N, 10.75%.

Refinement top

H atoms attached to C amd N atoms were positioned geometrically and refined using a riding-model approximation with C–H = 0.93–0.96 Å; N-H = 0.86Å and Uiso(H) = 1.2–1.5Ueq(C, N). The water H atoms were located in difference Fourier maps and included in 'as found' positions in a riding-model approximation with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the donor-to-acceptor distances of hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure of (I) illustrating π-π stacking interactions as dashed lines.
Diaqua(5-methyl-1H-pyrazole-3-carboxylato)(4-nitrobenzoato)copper(II) top
Crystal data top
[Cu(C7H4NO4)(C5H5N2O2)(H2O)2]Z = 2
Mr = 390.79F(000) = 398
Triclinic, P1Dx = 1.776 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.965 (1) ÅCell parameters from 2564 reflections
b = 9.1860 (13) Åθ = 2.6–27.9°
c = 12.4220 (16) ŵ = 1.55 mm1
α = 96.633 (1)°T = 298 K
β = 105.116 (2)°Block, blue
γ = 103.978 (2)°0.40 × 0.21 × 0.20 mm
V = 730.91 (17) Å3
Data collection top
Siemens SMART CCD
diffractometer
2526 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.577, Tmax = 0.748k = 1010
3783 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.6897P]
where P = (Fo2 + 2Fc2)/3
2526 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C7H4NO4)(C5H5N2O2)(H2O)2]γ = 103.978 (2)°
Mr = 390.79V = 730.91 (17) Å3
Triclinic, P1Z = 2
a = 6.965 (1) ÅMo Kα radiation
b = 9.1860 (13) ŵ = 1.55 mm1
c = 12.4220 (16) ÅT = 298 K
α = 96.633 (1)°0.40 × 0.21 × 0.20 mm
β = 105.116 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2249 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.748Rint = 0.013
3783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2526 reflectionsΔρmin = 0.32 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29638 (4)0.19451 (3)0.99760 (3)0.02357 (11)
O10.5665 (3)0.2069 (2)0.96944 (15)0.0277 (4)
O20.7980 (3)0.3422 (2)0.89863 (17)0.0381 (5)
O30.1131 (3)0.0129 (2)0.85168 (15)0.0304 (4)
O40.1882 (3)0.0059 (3)0.73675 (17)0.0436 (5)
O50.3529 (4)0.3559 (3)0.4025 (2)0.0652 (7)
O60.6072 (4)0.2702 (4)0.4743 (3)0.0742 (9)
O70.0648 (3)0.2226 (2)1.04985 (15)0.0300 (4)
H7A0.01830.25150.99970.045*
H7B0.00130.13971.06390.045*
O80.3635 (3)0.0686 (2)1.10838 (15)0.0307 (4)
H8A0.36280.01881.07680.046*
H8B0.27980.05761.14780.046*
N10.2972 (3)0.3507 (2)0.90140 (17)0.0220 (4)
N20.1750 (3)0.4334 (2)0.85329 (17)0.0240 (4)
H20.05470.42900.86090.029*
N30.4354 (4)0.2843 (3)0.4672 (2)0.0445 (6)
C10.6256 (4)0.3104 (3)0.9141 (2)0.0240 (5)
C20.4692 (3)0.3913 (3)0.8697 (2)0.0212 (5)
C30.4564 (4)0.5001 (3)0.8016 (2)0.0265 (5)
H30.55580.54680.76930.032*
C40.2652 (4)0.5246 (3)0.7917 (2)0.0265 (5)
C50.1576 (5)0.6251 (4)0.7292 (3)0.0449 (8)
H5A0.01320.57180.69570.067*
H5B0.21810.65260.67070.067*
H5C0.17210.71590.78110.067*
C60.0028 (4)0.0150 (3)0.7621 (2)0.0272 (6)
C70.1138 (4)0.0802 (3)0.6810 (2)0.0252 (5)
C80.3027 (4)0.0557 (3)0.6794 (2)0.0293 (6)
H80.35900.00450.72670.035*
C90.4072 (4)0.1196 (3)0.6083 (2)0.0321 (6)
H90.53240.10220.60640.038*
C100.3217 (4)0.2099 (3)0.5403 (2)0.0311 (6)
C110.1344 (4)0.2360 (3)0.5388 (2)0.0344 (6)
H110.07960.29690.49160.041*
C120.0298 (4)0.1692 (3)0.6095 (2)0.0318 (6)
H120.09780.18410.60900.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01987 (17)0.02766 (19)0.02970 (19)0.00910 (12)0.01187 (13)0.01551 (13)
O10.0231 (9)0.0327 (10)0.0370 (10)0.0137 (8)0.0148 (8)0.0191 (8)
O20.0228 (10)0.0500 (13)0.0556 (13)0.0161 (9)0.0218 (9)0.0290 (10)
O30.0326 (10)0.0323 (10)0.0270 (10)0.0051 (8)0.0103 (8)0.0141 (8)
O40.0300 (11)0.0721 (15)0.0385 (11)0.0153 (10)0.0180 (9)0.0289 (11)
O50.0705 (17)0.0853 (19)0.0645 (16)0.0304 (15)0.0368 (14)0.0546 (15)
O60.0562 (16)0.110 (2)0.095 (2)0.0382 (16)0.0546 (15)0.0648 (18)
O70.0239 (9)0.0356 (11)0.0418 (11)0.0134 (8)0.0176 (8)0.0230 (9)
O80.0342 (10)0.0357 (10)0.0351 (10)0.0173 (8)0.0194 (8)0.0204 (8)
N10.0207 (10)0.0243 (11)0.0259 (11)0.0088 (8)0.0108 (8)0.0102 (9)
N20.0195 (10)0.0278 (11)0.0317 (11)0.0115 (9)0.0122 (9)0.0128 (9)
N30.0464 (16)0.0533 (17)0.0445 (15)0.0145 (13)0.0242 (12)0.0257 (13)
C10.0205 (12)0.0245 (13)0.0291 (13)0.0067 (10)0.0094 (10)0.0086 (10)
C20.0180 (12)0.0211 (12)0.0262 (13)0.0036 (9)0.0102 (10)0.0067 (10)
C30.0255 (13)0.0275 (14)0.0326 (14)0.0071 (11)0.0164 (11)0.0127 (11)
C40.0294 (14)0.0265 (14)0.0295 (14)0.0102 (11)0.0134 (11)0.0132 (11)
C50.0460 (18)0.053 (2)0.0553 (19)0.0281 (15)0.0255 (15)0.0348 (16)
C60.0290 (14)0.0264 (14)0.0271 (14)0.0052 (11)0.0116 (11)0.0070 (11)
C70.0250 (13)0.0268 (14)0.0221 (13)0.0038 (10)0.0072 (10)0.0054 (10)
C80.0283 (14)0.0326 (15)0.0299 (14)0.0112 (11)0.0084 (11)0.0121 (11)
C90.0248 (13)0.0395 (16)0.0357 (15)0.0108 (12)0.0121 (11)0.0109 (12)
C100.0299 (14)0.0369 (15)0.0290 (14)0.0058 (12)0.0143 (11)0.0110 (11)
C110.0371 (15)0.0409 (17)0.0318 (15)0.0165 (13)0.0112 (12)0.0190 (12)
C120.0250 (13)0.0440 (17)0.0312 (14)0.0136 (12)0.0099 (11)0.0142 (12)
Geometric parameters (Å, º) top
Cu1—O81.9344 (17)C1—C21.488 (3)
Cu1—O71.9489 (17)C2—C31.387 (3)
Cu1—N11.970 (2)C3—C41.380 (3)
Cu1—O11.9811 (16)C3—H30.9300
Cu1—O32.3164 (19)C4—C51.488 (4)
O1—C11.286 (3)C5—H5A0.9600
O2—C11.236 (3)C5—H5B0.9600
O3—C61.269 (3)C5—H5C0.9600
O4—C61.244 (3)C6—C71.515 (3)
O5—N31.213 (3)C7—C121.388 (4)
O6—N31.216 (3)C7—C81.392 (4)
O7—H7A0.8468C8—C91.379 (4)
O7—H7B0.8446C8—H80.9300
O8—H8A0.8503C9—C101.376 (4)
O8—H8B0.8496C9—H90.9300
N1—C21.339 (3)C10—C111.378 (4)
N1—N21.345 (3)C11—C121.386 (4)
N2—C41.352 (3)C11—H110.9300
N2—H20.8599C12—H120.9300
N3—C101.475 (3)
O8—Cu1—O791.42 (7)C4—C3—C2105.6 (2)
O8—Cu1—N1166.43 (8)C4—C3—H3127.2
O7—Cu1—N196.45 (7)C2—C3—H3127.2
O8—Cu1—O188.78 (7)N2—C4—C3106.6 (2)
O7—Cu1—O1167.50 (8)N2—C4—C5121.2 (2)
N1—Cu1—O181.15 (7)C3—C4—C5132.2 (2)
O8—Cu1—O393.71 (7)C4—C5—H5A109.5
O7—Cu1—O397.90 (7)C4—C5—H5B109.5
N1—Cu1—O396.12 (7)H5A—C5—H5B109.5
O1—Cu1—O394.56 (7)C4—C5—H5C109.5
C1—O1—Cu1115.62 (15)H5A—C5—H5C109.5
C6—O3—Cu1116.46 (16)H5B—C5—H5C109.5
Cu1—O7—H7A110.3O4—C6—O3125.0 (2)
Cu1—O7—H7B109.9O4—C6—C7118.0 (2)
H7A—O7—H7B109.5O3—C6—C7117.0 (2)
Cu1—O8—H8A111.4C12—C7—C8119.3 (2)
Cu1—O8—H8B111.3C12—C7—C6119.8 (2)
H8A—O8—H8B109.4C8—C7—C6120.8 (2)
C2—N1—N2105.59 (19)C9—C8—C7120.7 (2)
C2—N1—Cu1114.33 (15)C9—C8—H8119.6
N2—N1—Cu1140.08 (16)C7—C8—H8119.6
N1—N2—C4111.61 (19)C10—C9—C8118.4 (2)
N1—N2—H2124.2C10—C9—H9120.8
C4—N2—H2124.2C8—C9—H9120.8
O5—N3—O6123.2 (3)C9—C10—C11122.6 (2)
O5—N3—C10118.5 (2)C9—C10—N3119.2 (2)
O6—N3—C10118.3 (2)C11—C10—N3118.2 (2)
O2—C1—O1123.6 (2)C10—C11—C12118.3 (2)
O2—C1—C2121.8 (2)C10—C11—H11120.9
O1—C1—C2114.6 (2)C12—C11—H11120.9
N1—C2—C3110.7 (2)C11—C12—C7120.6 (2)
N1—C2—C1114.0 (2)C11—C12—H12119.7
C3—C2—C1135.4 (2)C7—C12—H12119.7
O8—Cu1—O1—C1165.77 (18)O1—C1—C2—C3175.1 (3)
O7—Cu1—O1—C174.7 (4)N1—C2—C3—C40.4 (3)
N1—Cu1—O1—C15.10 (18)C1—C2—C3—C4179.1 (3)
O3—Cu1—O1—C1100.61 (18)N1—N2—C4—C30.5 (3)
O8—Cu1—O3—C6167.18 (17)N1—N2—C4—C5179.1 (2)
O7—Cu1—O3—C675.23 (18)C2—C3—C4—N20.6 (3)
N1—Cu1—O3—C622.18 (18)C2—C3—C4—C5179.1 (3)
O1—Cu1—O3—C6103.75 (17)Cu1—O3—C6—O4100.5 (3)
O8—Cu1—N1—C240.1 (4)Cu1—O3—C6—C778.9 (2)
O7—Cu1—N1—C2165.23 (17)O4—C6—C7—C1225.6 (4)
O1—Cu1—N1—C22.40 (17)O3—C6—C7—C12153.8 (2)
O3—Cu1—N1—C296.07 (17)O4—C6—C7—C8156.2 (3)
O8—Cu1—N1—N2140.9 (3)O3—C6—C7—C824.3 (4)
O7—Cu1—N1—N215.8 (3)C12—C7—C8—C90.5 (4)
O1—Cu1—N1—N2176.6 (3)C6—C7—C8—C9177.7 (2)
O3—Cu1—N1—N282.9 (3)C7—C8—C9—C100.9 (4)
C2—N1—N2—C40.3 (3)C8—C9—C10—C111.4 (4)
Cu1—N1—N2—C4178.7 (2)C8—C9—C10—N3177.5 (3)
Cu1—O1—C1—O2173.2 (2)O5—N3—C10—C9175.5 (3)
Cu1—O1—C1—C26.5 (3)O6—N3—C10—C94.0 (4)
N2—N1—C2—C30.1 (3)O5—N3—C10—C115.5 (4)
Cu1—N1—C2—C3179.42 (17)O6—N3—C10—C11174.9 (3)
N2—N1—C2—C1179.5 (2)C9—C10—C11—C120.4 (4)
Cu1—N1—C2—C10.2 (3)N3—C10—C11—C12178.4 (3)
O2—C1—C2—N1175.2 (2)C10—C11—C12—C71.0 (4)
O1—C1—C2—N14.5 (3)C8—C7—C12—C111.4 (4)
O2—C1—C2—C35.2 (5)C6—C7—C12—C11176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2i0.851.962.799 (2)173
O7—H7B···O3ii0.841.832.631 (2)157
O8—H8A···O1iii0.851.972.803 (3)165
O8—H8B···O4ii0.851.782.582 (2)156
N2—H2···O2i0.861.972.781 (3)157
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)(C5H5N2O2)(H2O)2]
Mr390.79
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.965 (1), 9.1860 (13), 12.4220 (16)
α, β, γ (°)96.633 (1), 105.116 (2), 103.978 (2)
V3)730.91 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.40 × 0.21 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.577, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
3783, 2526, 2249
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections2526
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O81.9344 (17)Cu1—O11.9811 (16)
Cu1—O71.9489 (17)Cu1—O32.3164 (19)
Cu1—N11.970 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2i0.851.962.799 (2)172.6
O7—H7B···O3ii0.841.832.631 (2)156.8
O8—H8A···O1iii0.851.972.803 (3)165.3
O8—H8B···O4ii0.851.782.582 (2)155.9
N2—H2···O2i0.861.972.781 (3)156.5
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2; (iii) x+1, y, z+2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002), the Natural Science Foundation of Guangxi (0832080), the Ministry of Education, Science and Technology Key Projects (205121) and the Science Foundation of the State Ethnic Affairs Commission (07GX05). The project was supported by the Open Fund of the Key Laboratory of Development & Application of Forest Chemicals of Guangxi (GXFC08–07), the Fund of the Talent Highland Research Program of Guangxi University, the Development Foundation of Guangxi Research Institute of the Chemical Industry, the Science Foundation of Guangxi University for Nationalities (0409032, 0409012,0509ZD047) and the Innovation Project of Guangxi University for Nationalities (gxun-chx0876).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMontoya, V., Pons, J., Garcia-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2007). Inorg. Chim. Acta, 360, 625–637.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds