organic compounds
3-Fluorobenzoic acid–4-acetylpyridine (1/1) at 100 K
aWestCHEM, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bDepartment of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: lynnet@chem.gla.ac.uk
In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one molecule and the pyridine N atom of the other. The benzoic acid molecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern.
Related literature
For the structure of pure m-fluorobenzoic acid, see: Taga et al. (1985). For standard bond-length data, see: Allen et al. (1992).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809002396/lh2755sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002396/lh2755Isup2.hkl
Crystals of the title material were grown by slow evaporation of solvent from a 1:1 solution of the two component molecules in ethanol.
All non-H atoms were refined anisotropically except that of the disordered F atom where the minor component was left isotropic. The C—F distances for the minor and major components were constrained to be similar. All H atoms were identified in the difference map, and were allowed to refine isotropically with the exception of the disordered positions where they were fixed geometrically and refined as riding groups. The proportion of disorder was obtained by identifying the value which gave the lowest R-factor.
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C7H5FO2·C7H7NO | F(000) = 544 |
Mr = 261.25 | Dx = 1.42 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 10265 reflections |
a = 10.0498 (11) Å | θ = 3–28° |
b = 10.5779 (8) Å | µ = 0.11 mm−1 |
c = 11.5045 (8) Å | T = 100 K |
β = 92.026 (4)° | Block, colourless |
V = 1222.23 (18) Å3 | 0.3 × 0.25 × 0.2 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP image-plate diffractometer | Rint = 0.031 |
ω scans | θmax = 27.5°, θmin = 3.3° |
15130 measured reflections | h = −13→13 |
2787 independent reflections | k = −13→11 |
1888 reflections with I > 2σ(I) | l = −13→14 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0573P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.23 e Å−3 |
2787 reflections | Δρmin = −0.21 e Å−3 |
220 parameters |
C7H5FO2·C7H7NO | V = 1222.23 (18) Å3 |
Mr = 261.25 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.0498 (11) Å | µ = 0.11 mm−1 |
b = 10.5779 (8) Å | T = 100 K |
c = 11.5045 (8) Å | 0.3 × 0.25 × 0.2 mm |
β = 92.026 (4)° |
Rigaku R-AXIS RAPID IP image-plate diffractometer | 1888 reflections with I > 2σ(I) |
15130 measured reflections | Rint = 0.031 |
2787 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.23 e Å−3 |
2787 reflections | Δρmin = −0.21 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1 | 0.86852 (8) | 0.91451 (8) | 0.42397 (7) | 0.0336 (2) | 0.96 |
C2 | 0.80192 (13) | 0.81276 (12) | 0.46507 (11) | 0.0243 (3) | 0.96 |
C2A | 0.80192 (13) | 0.81276 (12) | 0.46507 (11) | 0.0243 (3) | 0.04 |
H2A | 0.8481 | 0.8820 | 0.4373 | 0.029* | 0.04 |
C3 | 0.67564 (13) | 0.83201 (12) | 0.50485 (11) | 0.0220 (3) | |
H3 | 0.6362 (14) | 0.9146 (14) | 0.5003 (11) | 0.024 (4)* | |
C4 | 0.60718 (12) | 0.72721 (12) | 0.54569 (10) | 0.0203 (3) | |
C5 | 0.66565 (13) | 0.60822 (12) | 0.54596 (10) | 0.0229 (3) | |
H5 | 0.6176 (15) | 0.5344 (14) | 0.5736 (12) | 0.029 (4)* | |
C6 | 0.79390 (13) | 0.59376 (13) | 0.50555 (11) | 0.0251 (3) | 0.96 |
H6 | 0.8334 | 0.5142 | 0.5063 | 0.030* | 0.96 |
C6A | 0.79390 (13) | 0.59376 (13) | 0.50555 (11) | 0.0251 (3) | 0.04 |
F1A | 0.8666 (19) | 0.4867 (15) | 0.5104 (17) | 0.033 (4)* | 0.04 |
C7 | 0.86291 (14) | 0.69651 (13) | 0.46440 (11) | 0.0256 (3) | |
H7 | 0.9528 (16) | 0.6854 (14) | 0.4351 (12) | 0.027 (4)* | |
C8 | 0.46965 (13) | 0.74749 (11) | 0.58875 (10) | 0.0211 (3) | |
O9 | 0.41636 (10) | 0.64448 (9) | 0.63191 (8) | 0.0299 (2) | |
H9 | 0.325 (2) | 0.6594 (19) | 0.6527 (17) | 0.068 (6)* | |
O10 | 0.41357 (9) | 0.84903 (9) | 0.58340 (8) | 0.0287 (2) | |
N11 | 0.16961 (11) | 0.68081 (10) | 0.69676 (9) | 0.0235 (3) | |
C12 | 0.09586 (13) | 0.58338 (13) | 0.73125 (11) | 0.0235 (3) | |
H12 | 0.1365 (15) | 0.4988 (14) | 0.7270 (11) | 0.026 (4)* | |
C13 | 0.11730 (14) | 0.79700 (13) | 0.70272 (11) | 0.0254 (3) | |
H13 | 0.1748 (15) | 0.8649 (15) | 0.6758 (12) | 0.030 (4)* | |
C14 | −0.00901 (13) | 0.81965 (13) | 0.74237 (11) | 0.0240 (3) | |
H14 | −0.0396 (15) | 0.9059 (16) | 0.7441 (13) | 0.033 (4)* | |
C15 | −0.03229 (13) | 0.59762 (12) | 0.77072 (10) | 0.0213 (3) | |
H15 | −0.0813 (14) | 0.5233 (14) | 0.7917 (12) | 0.026 (4)* | |
C16 | −0.08659 (12) | 0.71782 (12) | 0.77594 (10) | 0.0208 (3) | |
C17 | −0.22611 (13) | 0.74106 (12) | 0.81607 (10) | 0.0222 (3) | |
O18 | −0.26975 (10) | 0.84818 (9) | 0.81733 (9) | 0.0327 (3) | |
C19 | −0.30654 (14) | 0.63097 (14) | 0.85455 (13) | 0.0282 (3) | |
H19A | −0.399 (2) | 0.6527 (17) | 0.8522 (15) | 0.049 (5)* | |
H19B | −0.2946 (17) | 0.5564 (17) | 0.8057 (14) | 0.045 (5)* | |
H19C | −0.2765 (17) | 0.6106 (17) | 0.9328 (15) | 0.050 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0277 (5) | 0.0260 (5) | 0.0480 (5) | −0.0030 (3) | 0.0144 (4) | 0.0045 (4) |
C2 | 0.0239 (7) | 0.0238 (7) | 0.0255 (7) | −0.0041 (5) | 0.0044 (5) | 0.0021 (5) |
C2A | 0.0239 (7) | 0.0238 (7) | 0.0255 (7) | −0.0041 (5) | 0.0044 (5) | 0.0021 (5) |
C3 | 0.0236 (7) | 0.0210 (7) | 0.0215 (6) | 0.0006 (5) | 0.0014 (5) | −0.0009 (5) |
C4 | 0.0203 (6) | 0.0220 (7) | 0.0186 (6) | −0.0006 (5) | 0.0003 (5) | −0.0013 (5) |
C5 | 0.0258 (7) | 0.0223 (7) | 0.0207 (6) | −0.0009 (5) | 0.0013 (5) | 0.0016 (5) |
C6 | 0.0265 (7) | 0.0232 (7) | 0.0257 (6) | 0.0045 (5) | 0.0031 (5) | −0.0007 (5) |
C6A | 0.0265 (7) | 0.0232 (7) | 0.0257 (6) | 0.0045 (5) | 0.0031 (5) | −0.0007 (5) |
C7 | 0.0215 (7) | 0.0299 (7) | 0.0255 (7) | 0.0032 (5) | 0.0047 (5) | 0.0010 (5) |
C8 | 0.0203 (6) | 0.0209 (7) | 0.0221 (6) | −0.0018 (5) | 0.0008 (5) | −0.0012 (5) |
O9 | 0.0223 (5) | 0.0251 (5) | 0.0428 (6) | −0.0002 (4) | 0.0101 (4) | 0.0039 (4) |
O10 | 0.0251 (5) | 0.0224 (5) | 0.0391 (5) | 0.0015 (4) | 0.0081 (4) | 0.0013 (4) |
N11 | 0.0207 (5) | 0.0241 (6) | 0.0259 (6) | −0.0014 (4) | 0.0029 (4) | 0.0015 (4) |
C12 | 0.0235 (7) | 0.0224 (7) | 0.0247 (7) | 0.0011 (5) | 0.0029 (5) | −0.0003 (5) |
C13 | 0.0254 (7) | 0.0230 (7) | 0.0278 (7) | −0.0033 (6) | 0.0015 (5) | 0.0021 (5) |
C14 | 0.0256 (7) | 0.0189 (7) | 0.0275 (7) | 0.0002 (5) | −0.0006 (5) | −0.0003 (5) |
C15 | 0.0220 (6) | 0.0189 (7) | 0.0231 (6) | −0.0010 (5) | 0.0018 (5) | 0.0009 (5) |
C16 | 0.0197 (6) | 0.0227 (7) | 0.0199 (6) | 0.0000 (5) | −0.0018 (5) | −0.0021 (5) |
C17 | 0.0211 (7) | 0.0225 (7) | 0.0228 (6) | 0.0018 (5) | −0.0013 (5) | −0.0037 (5) |
O18 | 0.0270 (5) | 0.0236 (5) | 0.0477 (6) | 0.0054 (4) | 0.0055 (4) | −0.0027 (4) |
C19 | 0.0205 (7) | 0.0279 (8) | 0.0364 (8) | 0.0003 (6) | 0.0048 (6) | −0.0001 (6) |
F1—C2 | 1.3611 (15) | N11—C13 | 1.3394 (17) |
C2—C7 | 1.3740 (19) | C12—C15 | 1.3888 (18) |
C2—C3 | 1.3794 (18) | C12—H12 | 0.985 (15) |
C3—C4 | 1.3949 (18) | C13—C14 | 1.3848 (19) |
C3—H3 | 0.960 (15) | C13—H13 | 0.979 (16) |
C4—C5 | 1.3890 (18) | C14—C16 | 1.3923 (18) |
C4—C8 | 1.5001 (18) | C14—H14 | 0.963 (16) |
C5—C6 | 1.3940 (18) | C15—C16 | 1.3858 (18) |
C5—H5 | 0.978 (15) | C15—H15 | 0.963 (15) |
C6—C7 | 1.3819 (19) | C16—C17 | 1.5118 (17) |
C6—H6 | 0.9300 | C17—O18 | 1.2153 (15) |
C7—H7 | 0.982 (16) | C17—C19 | 1.4935 (19) |
C8—O10 | 1.2135 (15) | C19—H19A | 0.955 (19) |
C8—O9 | 1.3189 (15) | C19—H19B | 0.978 (17) |
O9—H9 | 0.97 (2) | C19—H19C | 0.964 (18) |
N11—C12 | 1.3378 (17) | ||
F1—C2—C7 | 118.74 (11) | N11—C12—H12 | 116.7 (9) |
F1—C2—C3 | 117.91 (12) | C15—C12—H12 | 120.4 (9) |
C7—C2—C3 | 123.35 (12) | N11—C13—C14 | 122.79 (12) |
C2—C3—C4 | 117.71 (12) | N11—C13—H13 | 114.8 (9) |
C2—C3—H3 | 119.9 (8) | C14—C13—H13 | 122.4 (9) |
C4—C3—H3 | 122.3 (8) | C13—C14—C16 | 119.10 (12) |
C5—C4—C3 | 120.48 (12) | C13—C14—H14 | 117.9 (9) |
C5—C4—C8 | 121.57 (11) | C16—C14—H14 | 123.0 (9) |
C3—C4—C8 | 117.95 (11) | C16—C15—C12 | 119.00 (12) |
C4—C5—C6 | 119.65 (12) | C16—C15—H15 | 122.1 (9) |
C4—C5—H5 | 120.7 (9) | C12—C15—H15 | 118.8 (9) |
C6—C5—H5 | 119.6 (9) | C15—C16—C14 | 118.20 (12) |
C7—C6—C5 | 120.60 (13) | C15—C16—C17 | 122.23 (11) |
C7—C6—H6 | 119.7 | C14—C16—C17 | 119.57 (12) |
C5—C6—H6 | 119.7 | O18—C17—C19 | 121.61 (12) |
C2—C7—C6 | 118.20 (12) | O18—C17—C16 | 119.62 (12) |
C2—C7—H7 | 121.6 (9) | C19—C17—C16 | 118.77 (11) |
C6—C7—H7 | 120.2 (9) | C17—C19—H19A | 109.9 (11) |
O10—C8—O9 | 123.80 (12) | C17—C19—H19B | 112.3 (10) |
O10—C8—C4 | 122.79 (11) | H19A—C19—H19B | 108.4 (14) |
O9—C8—C4 | 113.41 (11) | C17—C19—H19C | 107.2 (11) |
C8—O9—H9 | 111.0 (12) | H19A—C19—H19C | 110.6 (14) |
C12—N11—C13 | 117.97 (11) | H19B—C19—H19C | 108.4 (14) |
N11—C12—C15 | 122.91 (12) | ||
F1—C2—C3—C4 | 179.30 (11) | C3—C4—C8—O9 | −176.16 (11) |
C7—C2—C3—C4 | −0.3 (2) | C13—N11—C12—C15 | 1.11 (19) |
C2—C3—C4—C5 | 0.14 (18) | C12—N11—C13—C14 | −0.25 (19) |
C2—C3—C4—C8 | −179.83 (11) | N11—C13—C14—C16 | −1.1 (2) |
C3—C4—C5—C6 | 0.28 (18) | N11—C12—C15—C16 | −0.61 (19) |
C8—C4—C5—C6 | −179.75 (11) | C12—C15—C16—C14 | −0.72 (18) |
C4—C5—C6—C7 | −0.5 (2) | C12—C15—C16—C17 | 179.02 (11) |
F1—C2—C7—C6 | −179.53 (11) | C13—C14—C16—C15 | 1.51 (19) |
C3—C2—C7—C6 | 0.1 (2) | C13—C14—C16—C17 | −178.24 (11) |
C5—C6—C7—C2 | 0.3 (2) | C15—C16—C17—O18 | −178.87 (11) |
C5—C4—C8—O10 | −175.77 (11) | C14—C16—C17—O18 | 0.87 (18) |
C3—C4—C8—O10 | 4.20 (19) | C15—C16—C17—C19 | 1.77 (18) |
C5—C4—C8—O9 | 3.87 (17) | C14—C16—C17—C19 | −178.49 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···N11 | 0.97 (2) | 1.68 (2) | 2.6428 (14) | 176.3 (18) |
C19—H19C···O10i | 0.96 (2) | 2.57 (2) | 3.385 (2) | 142.5 (14) |
C13—H13···F1ii | 0.98 (2) | 2.63 (2) | 3.3870 (16) | 134.3 (12) |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H5FO2·C7H7NO |
Mr | 261.25 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.0498 (11), 10.5779 (8), 11.5045 (8) |
β (°) | 92.026 (4) |
V (Å3) | 1222.23 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.3 × 0.25 × 0.2 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP image-plate diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15130, 2787, 1888 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.099, 1.05 |
No. of reflections | 2787 |
No. of parameters | 220 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.21 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···N11 | 0.97 (2) | 1.68 (2) | 2.6428 (14) | 176.3 (18) |
C19—H19C···O10i | 0.96 (2) | 2.57 (2) | 3.385 (2) | 142.5 (14) |
C13—H13···F1ii | 0.98 (2) | 2.63 (2) | 3.3870 (16) | 134.3 (12) |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
The authors thank Rigaku for the loan of the diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1992). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2008). CrystalClear incorporating D*TREK and FSPROCESS. Rigaku, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taga, T., Yamamoto, N. & Osaki, K. (1985). Acta Cryst. C41, 153–154. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of a molecular complex of 3-fluorobenzoic acid with 4-acetylpyridine (C7H5O2F C7H7NO) at 100 K is reported (Fig. 1). The molecular geometry of the 4-acetylpyridine is generally unremarkable. However the F atom in the 3-fluorobenzoic acid molecule is seen to be disordered over two positions in a 96:4% ratio. The majority component is found to lie on the same side of the molecule as the carbonyl C═O and this is consistent with the reported crystal structure of the pure material (Taga et al., 1985). The minority component was identified using a Fourier difference map which shows a peak height of greater than 1 electron bonded to C6, at a distance longer than characteristic for a C—H bond. The inclusion of a disorder model even at the 4% level improves the model significantly. Diffuse scattering was also observed in the diffraction images supporting the presence of disorder in this material. The minor component F atom was modelled isotropically and with constraints on the C—F distance. The thermal ellipsoids of both the carboxylic acid group and the methyl-keto group are slightly larger than those of their corresponding aromatic rings, indicating the possible presence of a small amount of libration in these groups.
A moderate strength hydrogen bond [O···N = 2.6428 (14) Å] is formed between the carboxylic acid group and the pyridine N atom. There is no indication of disorder of the carboxylic H atom at this temperature although the H atom isotropic thermal parameter is large as is often observed in the presence of a hydrogen bond. The two molecules lie almost exactly co-planar with each other.
These dimers are packed in an offset planar arrangement, as shown in Figs. 2 and 3. All the molecules are approximately co-planar with the (103) plane. The reason that this offset occurs may be due to the optimization of two close contacts from the methyl group. These contacts comprise a C—H···O interaction between the methyl group of the 4-acetylpyridine and the C═O of the carboxylic acid between planes, which induces an attractive tilt upwards in the acetylpyridine towards this acid molecule. Equally, the C—H···F interaction within the plane causes an attractive tilt in the adjacent molecule, giving rise to this offset packing arrangement.