organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(p-Phenyl­enedi­methyl­ene)di­imidazol-1-ium bis­­(3-carb­­oxy-4-hy­droxy­benzene­sulfonate) dihydrate

aSchool of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
*Correspondence e-mail: yongli_peng@126.com

(Received 12 January 2009; accepted 15 January 2009; online 23 January 2009)

In the title compound, C14H16N42+·2C7H5O6S·2H2O, the 3,3′-(p-phenyl­enedimethyl­ene)diimidazol-1-ium dication lies on a crystallographic inversion center. In the crystal structure, dications, anions and solvent water mol­ecules are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and C—H⋯π inter­actions, forming a three-dimensional network containing R22(4), R24(12), R44(22), R810(32) and R1214(66) ring motifs.

Related literature

For information on hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis and crystal structure of 1,4-bis­(imidazol-1-ylmeth­yl)benzene, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953.]). For related crystal structures, see: Meng et al. (2007[Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667-o670.], 2008[Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53-o57.]); Muthiah et al. (2003[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015-o2017.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.], 2005a[Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555-o558.],b[Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105-o109.],c[Smith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313-o316.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N42+·2C7H5O6S·2H2O

  • Mr = 710.68

  • Triclinic, [P \overline 1]

  • a = 7.9975 (6) Å

  • b = 8.8060 (7) Å

  • c = 11.2419 (8) Å

  • α = 90.784 (1)°

  • β = 96.656 (1)°

  • γ = 97.342 (1)°

  • V = 779.61 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 292 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.976

  • 8434 measured reflections

  • 3168 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.12

  • 3168 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of atoms N1/N2/C12–C14.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.93 (4) 1.68 (4) 2.593 (3) 168 (3)
O3—H3A⋯O2 0.87 (2) 2.038 (19) 2.591 (3) 121 (3)
O3—H3A⋯O3ii 0.87 (2) 2.46 (2) 2.883 (4) 111 (2)
O7—H7B⋯O4iii 0.81 (4) 1.93 (4) 2.741 (3) 173 (4)
O7—H7A⋯O5 0.88 (4) 1.93 (4) 2.799 (3) 172 (4)
N1—H1A⋯O6 0.79 (3) 1.95 (3) 2.707 (3) 160 (3)
C4—H4⋯O6iv 0.93 2.51 3.411 (4) 164
C12—H12⋯O2v 0.93 2.22 3.035 (3) 146
C14—H14⋯O6vi 0.93 2.52 3.219 (4) 132
C3—H3⋯Cg1vii 0.93 2.97 (1) 3.889 (3) 170
Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+1, -y, -z; (vi) -x, -y, -z+1; (vii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

5-Sulfosaliyclic acid (5-H2SSA), a strong organic acid (pKa1=2.6), can easily release its sulfonic hydrogen atom to a nitrogen-containing Lewis bases (Muthiah et al., 2003; Smith et al., 2004, 2005a, 2005b, 2005c; Meng et al., 2007; Meng et al., 2008), forming organic salts in most cases. In this paper, we report the crystal structure of the title compound, C14H16N4.2(C7H5O6S).2(H2O) (I) , which was obtained by crystallization of the 95% methanol solution of 5-H2SSA and 1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) (molar ratio 2:1) at room temperature.

In (I), the asymmetric unit consists of one half bix2+ dication, one complete 5-HSSA- anion and one water molecule (see Fig. 1 for symmetry complete formula unit). Similar to some analogs (Meng et al., 2007, 2008), the hydrogen atom was transferred from the sulfonic group to the imidazole nitrogen atom, forming an 1:2 organic salt (cation to anion). The hydroxyl O3 atom forms an intramolecular S(6) and an intermolecular R22(4) ring, resulting in a 5-HSSA- dimer (Bernstein, et al., 1995). The carboxyl O1 atom is only hydrogen-bonded to a water molecule at (x, y, z - 1). The plane defined by sulfonic O4/O5/O6 atoms makes a dihedral angle of 88.7 (1)° with the C1—C6 plane, with the distances of each oxygen atom away from the benzene-plane being 0.211 (1), 1.126 (1) and 1.237 (1) Å, respectively, which is slightly different from those recently reported by Meng, et al., 2007, 2008. In the bix2+ dication, there is an crystallogrphic inversion centre at the centre of gravity of the benzene ring.

In the crystal structure of (I), the ionic components are linked by a cooperative action of N—H···O, O—H···O and C—H···O hydrogen bonds into a continuous three-dimensional network which is further consolidated by a C—H···π interaction (Table 1). In more detail, the supramolecular structure in (I) can be analyzed in terms of three substructures. First, by utilizing three intermolecular O1—H1···O7i [symmetry code: (i) x, y, z - 1], O7—H7A···O5 and O7—H7B···O4ii [symmetry code: (ii) 1 - x, 1 - y, 1 - z] hydrogen bonds, the 5-HSSA- anions and water molecules are linked into a one-dimensional tape structure running parallel to the [001] direction (Fig.2) in which alternating R24(12) and R44(20) (Bernstein, et al., 1995) hydrogen-bonded rings are formed. Secondly, these adjacent one-dimensional tapes are further joined together by the hydroxylic R22(4) hydrogen-bonded ring, resulting in a two-dimensional wrinkled sheet running parallel to the (110) plane. In addition to, the intramolecular S(6) and intermolecular R22(4) hydrogen-bonded rings, another R810(32) hydrogen-bond motif is formed in the sheet (Fig.2). These sheets are joined by means of the N1—H1A···O6 hydrogen bond, forming a three-dimensional network (Fig.3) in which larger R1214(66) hydrogen-bonded rings are observed. Further analysis (using the program PLATON [Spek, 2003]) shows that these three-dimensional networks are strengthened by C—H···O hydrogen bonds and weak C—H···π interactions (Table 1).

Related literature top

For information on hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For the synthesis and crystal structure of 1,4-bis(imidazol-1-ylmethyl)benzene, see: Hoskins et al. (1997). For related crystal structures, see: Meng et al. (2007, 2008); Muthiah et al. (2003); Smith et al. (2004, 2005a,b,c). Cg1 is the centroid of atoms N1/N2/C12–C14.

Experimental top

1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) was prepared according to a literature method (Hoskins et al., 1997). 1:2 molar amounts of bix (47.6 mg, 0.2 mmol) and 5-sulfosalicylic acid dihydrate (101.6 mg, 0.4 mmol) were dissolved in 95% methanol (20 ml). The mixture was stirred for 30 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for one week. Block colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution (yield 86.4 mg, 60.8%, based on a 1:2 salt).

Refinement top

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93Å (aromatic) and 0.97Å (methylene) and refined in a riding-model approximation Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N atoms were found in difference Fourier maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms marked with 'a' are at position -x, -1 - y, -z. The H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional sheet running parallel to (110) plane. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the one-dimensional tape running parallel to the [001] direction.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the two-dimensional wrinkled sheet parallel to the (110) plane.
3,3'-(p-Phenylenedimethylene)diimidazol-1-ium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate top
Crystal data top
C14H16N42+·2C7H5O6S·2H2OZ = 1
Mr = 710.68F(000) = 370
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9975 (6) ÅCell parameters from 2637 reflections
b = 8.8060 (7) Åθ = 2.3–28.0°
c = 11.2419 (8) ŵ = 0.25 mm1
α = 90.784 (1)°T = 292 K
β = 96.656 (1)°Block, colorless
γ = 97.342 (1)°0.20 × 0.10 × 0.10 mm
V = 779.61 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3168 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
0.3° wide ω exposures scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 910
Tmin = 0.942, Tmax = 0.976k = 1111
8434 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3146P]
where P = (Fo2 + 2Fc2)/3
3168 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16N42+·2C7H5O6S·2H2Oγ = 97.342 (1)°
Mr = 710.68V = 779.61 (10) Å3
Triclinic, P1Z = 1
a = 7.9975 (6) ÅMo Kα radiation
b = 8.8060 (7) ŵ = 0.25 mm1
c = 11.2419 (8) ÅT = 292 K
α = 90.784 (1)°0.20 × 0.10 × 0.10 mm
β = 96.656 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2524 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.976Rint = 0.024
8434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.34 e Å3
3168 reflectionsΔρmin = 0.24 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6276 (3)0.1488 (3)0.0830 (2)0.0345 (5)
C20.7379 (3)0.0442 (3)0.1231 (2)0.0411 (6)
C30.7390 (4)0.0098 (3)0.2385 (3)0.0498 (7)
H30.81140.08030.26450.060*
C40.6339 (4)0.0403 (3)0.3140 (2)0.0460 (6)
H40.63510.00320.39110.055*
C50.5250 (3)0.1465 (3)0.2763 (2)0.0341 (5)
C60.5211 (3)0.1995 (3)0.1617 (2)0.0333 (5)
H60.44740.26930.13620.040*
C70.6258 (3)0.2045 (3)0.0404 (2)0.0367 (6)
C80.0498 (4)0.5225 (3)0.1136 (2)0.0445 (6)
C90.0677 (4)0.6056 (3)0.0730 (2)0.0501 (7)
H90.11430.67740.12210.060*
C100.1170 (4)0.4163 (3)0.0397 (3)0.0517 (7)
H100.19630.35910.06610.062*
C110.1021 (5)0.5466 (4)0.2371 (3)0.0625 (9)
H11A0.22500.56430.23150.075*
H11B0.05860.63700.26990.075*
C120.0904 (4)0.3092 (3)0.3061 (2)0.0489 (7)
H120.15790.30610.24390.059*
C130.1055 (4)0.3780 (3)0.4208 (2)0.0474 (7)
H130.19790.43250.45110.057*
C140.0133 (4)0.2505 (3)0.4685 (3)0.0513 (7)
H140.02910.19920.53840.062*
N10.1078 (3)0.2097 (3)0.3962 (2)0.0523 (6)
H1A0.175 (4)0.135 (4)0.406 (3)0.063*
N20.0387 (3)0.4140 (2)0.31870 (18)0.0419 (5)
O10.5166 (2)0.3008 (2)0.07003 (16)0.0477 (5)
H10.520 (4)0.323 (4)0.150 (3)0.072*
O20.7193 (2)0.1627 (2)0.10967 (16)0.0504 (5)
O30.8439 (3)0.0099 (3)0.05360 (19)0.0635 (6)
H3A0.858 (4)0.013 (4)0.0196 (15)0.095*
O40.3120 (3)0.3311 (2)0.32481 (17)0.0513 (5)
O50.5091 (3)0.2577 (3)0.48529 (18)0.0677 (6)
O60.2758 (3)0.0777 (2)0.4006 (2)0.0664 (6)
O70.5030 (3)0.3928 (2)0.71130 (18)0.0563 (6)
H7A0.506 (5)0.342 (4)0.644 (4)0.084*
H7B0.565 (5)0.471 (5)0.700 (3)0.084*
S10.39522 (9)0.20854 (7)0.37902 (5)0.0380 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (13)0.0356 (11)0.0304 (13)0.0014 (10)0.0101 (10)0.0005 (9)
C20.0420 (15)0.0447 (13)0.0394 (14)0.0077 (11)0.0145 (12)0.0024 (11)
C30.0516 (17)0.0541 (15)0.0497 (17)0.0238 (13)0.0114 (13)0.0118 (13)
C40.0571 (17)0.0473 (14)0.0346 (14)0.0080 (12)0.0068 (12)0.0105 (11)
C50.0408 (14)0.0367 (12)0.0239 (11)0.0020 (10)0.0084 (10)0.0001 (9)
C60.0362 (13)0.0355 (11)0.0282 (12)0.0018 (10)0.0074 (10)0.0017 (9)
C70.0391 (14)0.0405 (12)0.0302 (12)0.0023 (11)0.0115 (11)0.0009 (10)
C80.0486 (16)0.0490 (14)0.0329 (14)0.0049 (12)0.0056 (12)0.0065 (11)
C90.0567 (18)0.0533 (16)0.0403 (15)0.0168 (13)0.0047 (13)0.0036 (12)
C100.0493 (17)0.0607 (17)0.0476 (17)0.0155 (14)0.0082 (13)0.0092 (13)
C110.083 (2)0.0612 (18)0.0376 (16)0.0217 (16)0.0181 (15)0.0101 (13)
C120.0461 (16)0.0579 (16)0.0411 (15)0.0069 (13)0.0142 (13)0.0036 (12)
C130.0448 (15)0.0683 (18)0.0301 (13)0.0035 (13)0.0134 (12)0.0044 (12)
C140.0567 (18)0.0588 (17)0.0397 (15)0.0109 (14)0.0087 (13)0.0068 (13)
N10.0543 (16)0.0512 (14)0.0470 (14)0.0095 (11)0.0055 (12)0.0062 (11)
N20.0443 (13)0.0500 (12)0.0300 (11)0.0033 (10)0.0100 (9)0.0018 (9)
O10.0577 (12)0.0605 (11)0.0293 (10)0.0153 (9)0.0142 (9)0.0116 (8)
O20.0561 (12)0.0623 (11)0.0374 (10)0.0087 (9)0.0237 (9)0.0049 (9)
O30.0681 (14)0.0761 (14)0.0585 (14)0.0311 (12)0.0333 (12)0.0130 (11)
O40.0595 (12)0.0561 (11)0.0436 (11)0.0171 (9)0.0170 (9)0.0094 (9)
O50.0763 (15)0.0925 (16)0.0349 (11)0.0276 (13)0.0058 (10)0.0228 (11)
O60.0833 (15)0.0500 (11)0.0726 (15)0.0035 (10)0.0506 (13)0.0020 (10)
O70.0863 (17)0.0511 (12)0.0309 (10)0.0033 (11)0.0104 (10)0.0057 (9)
S10.0512 (4)0.0382 (3)0.0258 (3)0.0028 (3)0.0128 (3)0.0011 (2)
Geometric parameters (Å, º) top
C1—C21.399 (4)C10—H100.9300
C1—C61.403 (3)C11—N21.474 (3)
C1—C71.476 (3)C11—H11A0.9700
C2—O31.343 (3)C11—H11B0.9700
C2—C31.386 (4)C12—N11.313 (4)
C3—C41.368 (4)C12—N21.316 (3)
C3—H30.9300C12—H120.9300
C4—C51.396 (4)C13—C141.331 (4)
C4—H40.9300C13—N21.371 (3)
C5—C61.374 (3)C13—H130.9300
C5—S11.765 (2)C14—N11.353 (4)
C6—H60.9300C14—H140.9300
C7—O21.224 (3)N1—H1A0.79 (3)
C7—O11.313 (3)O1—H10.93 (4)
C8—C91.376 (4)O3—H3A0.87 (2)
C8—C101.378 (4)O4—S11.4444 (19)
C8—C111.505 (4)O5—S11.441 (2)
C9—C10i1.379 (4)O6—S11.442 (2)
C9—H90.9300O7—H7A0.88 (4)
C10—C9i1.379 (4)O7—H7B0.81 (4)
C2—C1—C6119.0 (2)N2—C11—C8112.1 (2)
C2—C1—C7119.7 (2)N2—C11—H11A109.2
C6—C1—C7121.3 (2)C8—C11—H11A109.2
O3—C2—C3117.2 (2)N2—C11—H11B109.2
O3—C2—C1122.7 (2)C8—C11—H11B109.2
C3—C2—C1120.1 (2)H11A—C11—H11B107.9
C4—C3—C2120.3 (2)N1—C12—N2108.4 (2)
C4—C3—H3119.9N1—C12—H12125.8
C2—C3—H3119.9N2—C12—H12125.8
C3—C4—C5120.5 (2)C14—C13—N2107.2 (2)
C3—C4—H4119.8C14—C13—H13126.4
C5—C4—H4119.8N2—C13—H13126.4
C6—C5—C4119.8 (2)C13—C14—N1107.1 (2)
C6—C5—S1121.96 (19)C13—C14—H14126.5
C4—C5—S1118.19 (18)N1—C14—H14126.5
C5—C6—C1120.3 (2)C12—N1—C14109.2 (2)
C5—C6—H6119.8C12—N1—H1A126 (3)
C1—C6—H6119.8C14—N1—H1A124 (3)
O2—C7—O1122.8 (2)C12—N2—C13108.1 (2)
O2—C7—C1122.1 (2)C12—N2—C11126.2 (2)
O1—C7—C1115.1 (2)C13—N2—C11125.7 (2)
C9—C8—C10118.8 (2)C7—O1—H1108 (2)
C9—C8—C11120.3 (3)C2—O3—H3A128.1 (11)
C10—C8—C11120.9 (3)H7A—O7—H7B100 (4)
C8—C9—C10i120.7 (3)O5—S1—O6111.68 (15)
C8—C9—H9119.6O5—S1—O4112.97 (13)
C10i—C9—H9119.6O6—S1—O4112.13 (13)
C8—C10—C9i120.5 (3)O5—S1—C5105.30 (12)
C8—C10—H10119.8O6—S1—C5106.67 (11)
C9i—C10—H10119.8O4—S1—C5107.55 (11)
C6—C1—C2—O3180.0 (2)C9—C8—C10—C9i0.2 (5)
C7—C1—C2—O30.3 (4)C11—C8—C10—C9i179.6 (3)
C6—C1—C2—C31.0 (4)C9—C8—C11—N2110.3 (3)
C7—C1—C2—C3179.3 (2)C10—C8—C11—N269.2 (4)
O3—C2—C3—C4179.8 (3)N2—C13—C14—N10.0 (3)
C1—C2—C3—C40.8 (4)N2—C12—N1—C140.3 (4)
C2—C3—C4—C50.3 (4)C13—C14—N1—C120.2 (4)
C3—C4—C5—C61.1 (4)N1—C12—N2—C130.3 (3)
C3—C4—C5—S1179.0 (2)N1—C12—N2—C11179.9 (3)
C4—C5—C6—C10.8 (4)C14—C13—N2—C120.2 (3)
S1—C5—C6—C1179.28 (17)C14—C13—N2—C11179.8 (3)
C2—C1—C6—C50.2 (4)C8—C11—N2—C1221.6 (5)
C7—C1—C6—C5179.8 (2)C8—C11—N2—C13157.9 (3)
C2—C1—C7—O20.5 (4)C6—C5—S1—O5128.2 (2)
C6—C1—C7—O2179.2 (2)C4—C5—S1—O552.0 (2)
C2—C1—C7—O1179.2 (2)C6—C5—S1—O6113.1 (2)
C6—C1—C7—O11.2 (3)C4—C5—S1—O666.8 (2)
C10—C8—C9—C10i0.2 (5)C6—C5—S1—O47.4 (2)
C11—C8—C9—C10i179.6 (3)C4—C5—S1—O4172.70 (19)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7ii0.93 (4)1.68 (4)2.593 (3)168 (3)
O3—H3A···O20.87 (2)2.04 (2)2.591 (3)121 (3)
O3—H3A···O3iii0.87 (2)2.46 (2)2.883 (4)111 (2)
O7—H7B···O4iv0.81 (4)1.93 (4)2.741 (3)173 (4)
O7—H7A···O50.88 (4)1.93 (4)2.799 (3)172 (4)
N1—H1A···O60.79 (3)1.95 (3)2.707 (3)160 (3)
C4—H4···O6v0.932.513.411 (4)164
C12—H12···O2vi0.932.223.035 (3)146
C14—H14···O6vii0.932.523.219 (4)132
C3—H3···Cg1viii0.932.97 (1)3.889 (3)170
Symmetry codes: (ii) x, y, z1; (iii) x+2, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H16N42+·2C7H5O6S·2H2O
Mr710.68
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.9975 (6), 8.8060 (7), 11.2419 (8)
α, β, γ (°)90.784 (1), 96.656 (1), 97.342 (1)
V3)779.61 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.942, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8434, 3168, 2524
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.12
No. of reflections3168
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.93 (4)1.68 (4)2.593 (3)168 (3)
O3—H3A···O20.87 (2)2.038 (19)2.591 (3)121 (3)
O3—H3A···O3ii0.87 (2)2.46 (2)2.883 (4)111 (2)
O7—H7B···O4iii0.81 (4)1.93 (4)2.741 (3)173 (4)
O7—H7A···O50.88 (4)1.93 (4)2.799 (3)172 (4)
N1—H1A···O60.79 (3)1.95 (3)2.707 (3)160 (3)
C4—H4···O6iv0.932.513.411 (4)164.3
C12—H12···O2v0.932.223.035 (3)146.3
C14—H14···O6vi0.932.523.219 (4)132.3
C3—H3···Cg1vii0.932.97 (1)3.889 (3)170
Symmetry codes: (i) x, y, z1; (ii) x+2, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555–o558.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313–o316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds