organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o414-o415

(1S)-1,2-O-Benzyl­­idene-α-D-glucurono-6,3-lactone

aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, bDextra Laboratories Ltd, Science and Technology Centre, Whiteknights Road, Reading RG6 6BZ, England, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 20 January 2009; accepted 22 January 2009; online 31 January 2009)

X-ray crystallographic analysis has established that the major product from the protection of D-glucoronolactone with benzaldehyde is (1S)-1,2-O-benzyl­idene-α-D-glucurono-6,3-lactone, C13H12O6, rather than the R epimer. The crystal structure exists as O—H⋯O hydrogen-bonded chains of mol­ecules lying parallel to the a axis. The absolute configuration was determined by the use of D-glucuronolactone as the starting material.

Related literature

For related literature on the synthesis of protected D-glucuronolactone, see: Sheldrick et al. (1983[Sheldrick, B., Mackie, W. & Akrigg, D. (1983). Acta Cryst. C39, 1257-1259.]); Macher et al. (1979[Macher, I., Dax, K., Inselsbacher, H. & Weidmann, H. (1979). Carbohydr. Res. 77, 225-230.]); Shah (1969[Shah, R. H. (1970). Carbohydr. Res. 12, 43-56.]). For literature related to the use of acetonide-protected D-glucuronolactone as an inter­mediate in the synthesis of (a) other sugars, see: Bleriot et al. (1997[Bleriot, Y., Masaguer, C. F., Charlwood, J., Winchester, B. G., Lane, A. L., Crook, S., Watkin, D. J. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15135-15146.]); Dax et al. (1991[Dax, K., Fechter, M., Gradnig, G., Grassberger, V., Illaszewicz, C., Ungerank, M. V. & Stuetz, A. E. D (1991). Carbohydr. Res. 217, 59-70.]); Ke et al. (2003[Ke, W., Whitfield, D. M., Gill, M., Larocque, S. & Yu, S.-H. (2003). Tetrahedron Lett. 44, 7767-7770.]); Masaguer et al. (1997[Masaguer, C. F., Bleriot, Y., Charlwood, J., Winchester, B. G. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15147-15156.]); (b) imino sugars, see: Dax et al. (1990[Dax, K., Gaigg, B., Grassberger, B., Koelblinger, B. & Stuetz, A. E. (1990). J. Carbohydr. Chem. 9, 479-99.]); (c) sugar amino acids, see: Bashyal et al. (1986[Bashyal, B. P., Chow, H. F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205-3208.], 1987[Bashyal, B. P., Chow, H. F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415-422.]); (d) many other bioactive targets, see: Kitahara et al. (1974[Kitahara, T., Ogawa, T., Naganuma, T. & Matsui, M. (1974). Agric. Biol. Chem. 38, 2189-90.]); Austin et al. (1987[Austin, G. N., Fleet, G. W. J., Peach, J. M., Prout, K. & Son, J. C. (1987). Tetrahedron Lett. 28, 4741-4744.]); Witty et al. (1990[Witty, D. R., Fleet, G. W. J., Vogt, K., Wilson, F. X., Wang, Y., Storer, R., Myers, P. L. & Wallis, C. J. (1990). Tetrahedron Lett. 33, 4787-4790.]); Shing & Tsui (1992[Shing, T. K. M. & Tsui, H. C. (1992). J. Chem. Soc. Chem. Commun. pp. 432-434.]); Yoda et al. (2002[Yoda, H., Nakaseko, Y. & Takabe, K. (2002). Synlett, pp. 1532-1534.]). For the original NMR studies on benzylidene-protected glucorono­lactone, see Csuk et al. (1984[Csuk, R., Mueller, N. & Weidmann, H. (1984). Monatsh. Chem. 115, 93-99.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O6

  • Mr = 264.23

  • Monoclinic, P 21

  • a = 5.6329 (1) Å

  • b = 7.8943 (2) Å

  • c = 13.3182 (3) Å

  • β = 99.9545 (9)°

  • V = 583.32 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.60 × 0.50 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.88, Tmax = 0.96

  • 8275 measured reflections

  • 1418 independent reflections

  • 1341 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 0.96

  • 1418 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.86 1.97 2.811 (3) 165
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

D-Glucuronolactone 3 (Fig. 1), the only cheaply availably uronic acid, reacts with acetone in the presence of an acid catalyst to form the acetonide 4 (Sheldrick et al., 1983). With only a single unprotected hydroxyl group, the lactone 4 provides convenient access to C-5 of D-glucose and has long been used as a versatile intermediate for the synthesis of other sugars (Bleriot et al., 1997; Dax et al., 1991; Ke et al., 2003; Masaguer et al., 1997), imino sugars (Dax et al., 1990), sugar amino acids (Bashyal et al., 1986, 1987) and many other bioactive targets (Kitahara et al., 1974; Austin et al., 1987; Witty et al., 1990; Shing & Tsui, 1992; Yoda et al., 2002). Reaction of 3 with benzaldehyde in the presence of zinc chloride gives a high yield of the benzylidene protected lactones in which the epimers are formed in a ratio of approximately 5:1 (Macher et al., 1979; Shah, 1969). The configuration of the benzylidene acetal has previously been investigated by NMR experiments which suggest that 1, which is the major product, has the 1,2(S)-configuration (Csuk et al., 1984). The crystallographic analysis confirms that this assignment is correct and that the major product is 1. Although as yet there have been no examples of the use of the benzylidene acetals 1 and 2 as synthetic intermediates, it is likely there will be cases where the use of a benzylidene group, which can be removed by hydrogenation, will have a significant advantage over the acetonide 4, where strong acid must be used to remove the protecting group.

The title compound (Fig. 2) exists as alternating layers of hydrogen bonded chains of molecules lying parallel to the a-axis (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered. The absolute configuration was determined by the use of D-glucuronolactone as the starting material.

Related literature top

For related literature on the synthesis of protected D-glucuronolactone, see: Sheldrick et al. (1983); Macher et al. (1979); Shah (1969). For literature related to the use of acetonide-protected D-glucuronolactone as an intermediate in the synthesis of (a) other sugars, see: Bleriot et al. (1997); Dax et al. (1991); Ke et al. (2003); Masaguer et al. (1997); (b) imino sugars, see: Dax et al. (1990); (c) sugar amino acids, see: Bashyal et al. (1986, 1987); (d) many other bioactive targets, see: Kitahara et al. (1974); Austin et al. (1987); Witty et al. (1990); Shing & Tsui (1992); Yoda et al. (2002).

Experimental top

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 419.5–421.5 K; [α]D20 +67 (c, 1.0 in acetone) (Macher et al., 1979).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic scheme
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram of the title compound projected along the b-axis. Hydrogen bonding is indicated by dotted lines.
[Figure 4] Fig. 4. Packing diagram showing alternating layers of hydrogen bonded chains of molecules.
(1S)-1,2-O-Benzylidene-α-D-glucurono-6,3-lactone top
Crystal data top
C13H12O6F(000) = 276
Mr = 264.23Dx = 1.504 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1368 reflections
a = 5.6329 (1) Åθ = 5–27°
b = 7.8943 (2) ŵ = 0.12 mm1
c = 13.3182 (3) ÅT = 150 K
β = 99.9545 (9)°Plate, colourless
V = 583.32 (2) Å30.60 × 0.50 × 0.30 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
1341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.88, Tmax = 0.96k = 1010
8275 measured reflectionsl = 1717
1418 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 Method = modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.13P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.96(Δ/σ)max = 0.009
1418 reflectionsΔρmax = 0.20 e Å3
172 parametersΔρmin = 0.18 e Å3
1 restraint
Crystal data top
C13H12O6V = 583.32 (2) Å3
Mr = 264.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.6329 (1) ŵ = 0.12 mm1
b = 7.8943 (2) ÅT = 150 K
c = 13.3182 (3) Å0.60 × 0.50 × 0.30 mm
β = 99.9545 (9)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1418 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1341 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.96Rint = 0.022
8275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.068H-atom parameters constrained
S = 0.96Δρmax = 0.20 e Å3
1418 reflectionsΔρmin = 0.18 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1555 (2)0.28908 (18)1.09521 (9)0.0317
C21.0013 (3)0.2487 (3)1.02461 (12)0.0257
O31.04981 (19)0.2312 (2)0.92986 (9)0.0296
C40.8321 (3)0.1868 (2)0.85789 (12)0.0263
C50.6246 (3)0.2272 (2)0.91452 (12)0.0246
C60.7382 (3)0.2089 (2)1.02587 (12)0.0259
O70.6540 (2)0.3147 (2)1.09703 (9)0.0334
O80.5720 (2)0.40215 (18)0.89088 (9)0.0285
C90.6089 (3)0.4347 (2)0.79011 (12)0.0265
C100.8011 (3)0.3081 (2)0.76761 (12)0.0267
O110.6942 (2)0.2266 (2)0.67619 (9)0.0323
C120.4413 (3)0.2413 (2)0.66815 (12)0.0269
O130.4052 (2)0.40025 (19)0.71549 (9)0.0307
C140.3210 (3)0.2382 (2)0.55862 (12)0.0266
C150.1004 (3)0.1573 (3)0.53152 (14)0.0320
C160.0149 (3)0.1563 (3)0.43042 (15)0.0379
C170.0921 (3)0.2338 (3)0.35636 (14)0.0374
C180.3143 (3)0.3125 (3)0.38315 (14)0.0368
C190.4288 (3)0.3166 (3)0.48437 (14)0.0321
H410.83380.06670.83630.0325*
H510.48050.15540.89120.0314*
H610.72930.08461.04390.0312*
H910.65420.55700.78430.0323*
H1010.95510.36230.76120.0324*
H1210.37930.15000.70710.0326*
H1510.02350.10400.58300.0404*
H1610.17240.10160.41080.0448*
H1710.01140.23440.28520.0453*
H1810.38760.36310.33020.0450*
H1910.58530.37250.50580.0382*
H710.50300.29051.09010.0522*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0237 (6)0.0355 (8)0.0344 (6)0.0018 (5)0.0009 (5)0.0001 (5)
C20.0234 (7)0.0216 (7)0.0319 (8)0.0030 (7)0.0044 (6)0.0031 (7)
O30.0193 (5)0.0384 (7)0.0316 (6)0.0026 (5)0.0051 (4)0.0001 (6)
C40.0213 (7)0.0265 (8)0.0306 (8)0.0011 (6)0.0036 (6)0.0021 (7)
C50.0209 (7)0.0227 (8)0.0306 (8)0.0016 (7)0.0058 (6)0.0001 (7)
C60.0233 (7)0.0256 (9)0.0295 (8)0.0013 (7)0.0059 (6)0.0014 (7)
O70.0262 (6)0.0428 (8)0.0325 (6)0.0009 (6)0.0088 (5)0.0056 (6)
O80.0309 (6)0.0268 (6)0.0286 (6)0.0060 (6)0.0077 (5)0.0009 (5)
C90.0291 (8)0.0228 (8)0.0276 (8)0.0000 (7)0.0050 (6)0.0006 (6)
C100.0226 (7)0.0295 (9)0.0286 (8)0.0018 (7)0.0064 (6)0.0018 (7)
O110.0252 (5)0.0416 (7)0.0302 (6)0.0068 (6)0.0047 (4)0.0076 (6)
C120.0251 (7)0.0240 (8)0.0319 (8)0.0009 (7)0.0061 (6)0.0012 (7)
O130.0285 (6)0.0316 (7)0.0305 (6)0.0082 (6)0.0010 (5)0.0051 (5)
C140.0267 (7)0.0231 (8)0.0302 (8)0.0019 (7)0.0056 (6)0.0024 (7)
C150.0291 (8)0.0301 (9)0.0380 (9)0.0033 (8)0.0095 (7)0.0071 (8)
C160.0298 (9)0.0393 (11)0.0432 (11)0.0038 (8)0.0021 (8)0.0154 (9)
C170.0419 (10)0.0367 (10)0.0319 (8)0.0061 (9)0.0014 (7)0.0079 (9)
C180.0423 (10)0.0343 (10)0.0344 (9)0.0016 (9)0.0083 (8)0.0017 (8)
C190.0314 (8)0.0291 (9)0.0363 (9)0.0040 (8)0.0068 (7)0.0011 (8)
Geometric parameters (Å, º) top
O1—C21.207 (2)C10—O111.416 (2)
C2—O31.344 (2)C10—H1010.984
C2—C61.518 (2)O11—C121.4148 (19)
O3—C41.4628 (19)C12—O131.435 (2)
C4—C51.530 (2)C12—C141.499 (2)
C4—C101.524 (2)C12—H1210.987
C4—H410.991C14—C151.388 (2)
C5—C61.517 (2)C14—C191.392 (3)
C5—O81.436 (2)C15—C161.390 (3)
C5—H510.995C15—H1510.969
C6—O71.406 (2)C16—C171.384 (3)
C6—H611.014C16—H1610.981
O7—H710.861C17—C181.388 (3)
O8—C91.417 (2)C17—H1710.977
C9—C101.540 (2)C18—C191.390 (3)
C9—O131.4088 (19)C18—H1810.963
C9—H911.005C19—H1910.983
O1—C2—O3121.52 (15)C9—C10—O11104.69 (13)
O1—C2—C6128.19 (15)C4—C10—O11111.49 (15)
O3—C2—C6110.28 (13)C9—C10—H101113.3
C2—O3—C4110.88 (12)C4—C10—H101111.0
O3—C4—C5104.62 (13)O11—C10—H101111.9
O3—C4—C10109.58 (14)C10—O11—C12107.49 (12)
C5—C4—C10105.37 (13)O11—C12—O13104.83 (13)
O3—C4—H41111.7O11—C12—C14110.64 (13)
C5—C4—H41112.9O13—C12—C14111.54 (15)
C10—C4—H41112.2O11—C12—H121110.1
C4—C5—C6103.48 (12)O13—C12—H121108.5
C4—C5—O8103.80 (13)C14—C12—H121111.0
C6—C5—O8109.98 (14)C12—O13—C9108.59 (12)
C4—C5—H51112.3C12—C14—C15119.63 (16)
C6—C5—H51115.8C12—C14—C19120.33 (15)
O8—C5—H51110.7C15—C14—C19120.04 (16)
C2—C6—C5102.55 (12)C14—C15—C16120.10 (18)
C2—C6—O7109.20 (14)C14—C15—H151120.4
C5—C6—O7117.93 (14)C16—C15—H151119.5
C2—C6—H61106.9C15—C16—C17119.99 (17)
C5—C6—H61107.1C15—C16—H161120.7
O7—C6—H61112.2C17—C16—H161119.3
C6—O7—H71103.8C16—C17—C18119.95 (17)
C5—O8—C9108.88 (13)C16—C17—H171120.4
O8—C9—C10106.84 (14)C18—C17—H171119.6
O8—C9—O13113.45 (14)C17—C18—C19120.40 (18)
C10—C9—O13104.58 (13)C17—C18—H181118.6
O8—C9—H91109.2C19—C18—H181121.0
C10—C9—H91114.3C14—C19—C18119.51 (17)
O13—C9—H91108.5C14—C19—H191118.2
C9—C10—C4104.06 (13)C18—C19—H191122.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O1i0.992.373.200 (3)141
C6—H61···O8ii1.012.493.289 (3)135
C9—H91···O1iii1.012.553.349 (3)137
C15—H151···O11iv0.972.593.281 (3)128
C16—H161···O13v0.982.513.350 (3)143
O7—H71···O1iv0.861.972.811 (3)165
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y1/2, z+2; (iii) x+2, y+1/2, z+2; (iv) x1, y, z; (v) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H12O6
Mr264.23
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.6329 (1), 7.8943 (2), 13.3182 (3)
β (°) 99.9545 (9)
V3)583.32 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.60 × 0.50 × 0.30
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.88, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
8275, 1418, 1341
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 0.96
No. of reflections1418
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O1i0.861.972.811 (3)165
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Oxford University Crystallography Service for use of the instruments.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAustin, G. N., Fleet, G. W. J., Peach, J. M., Prout, K. & Son, J. C. (1987). Tetrahedron Lett. 28, 4741–4744.  CrossRef CAS Web of Science Google Scholar
First citationBashyal, B. P., Chow, H. F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422.  CrossRef CAS Web of Science Google Scholar
First citationBashyal, B. P., Chow, H. F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205–3208.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBleriot, Y., Masaguer, C. F., Charlwood, J., Winchester, B. G., Lane, A. L., Crook, S., Watkin, D. J. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15135–15146.  CSD CrossRef CAS Web of Science Google Scholar
First citationCsuk, R., Mueller, N. & Weidmann, H. (1984). Monatsh. Chem. 115, 93–99.  CrossRef CAS Web of Science Google Scholar
First citationDax, K., Fechter, M., Gradnig, G., Grassberger, V., Illaszewicz, C., Ungerank, M. V. & Stuetz, A. E. D (1991). Carbohydr. Res. 217, 59–70.  CrossRef CAS Web of Science Google Scholar
First citationDax, K., Gaigg, B., Grassberger, B., Koelblinger, B. & Stuetz, A. E. (1990). J. Carbohydr. Chem. 9, 479–99.  CrossRef CAS Web of Science Google Scholar
First citationKe, W., Whitfield, D. M., Gill, M., Larocque, S. & Yu, S.-H. (2003). Tetrahedron Lett. 44, 7767–7770.  Web of Science CrossRef CAS Google Scholar
First citationKitahara, T., Ogawa, T., Naganuma, T. & Matsui, M. (1974). Agric. Biol. Chem. 38, 2189–90.  CrossRef CAS Google Scholar
First citationMacher, I., Dax, K., Inselsbacher, H. & Weidmann, H. (1979). Carbohydr. Res. 77, 225–230.  CrossRef CAS Web of Science Google Scholar
First citationMasaguer, C. F., Bleriot, Y., Charlwood, J., Winchester, B. G. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15147–15156.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShah, R. H. (1970). Carbohydr. Res. 12, 43–56.  CrossRef CAS Google Scholar
First citationSheldrick, B., Mackie, W. & Akrigg, D. (1983). Acta Cryst. C39, 1257–1259.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShing, T. K. M. & Tsui, H. C. (1992). J. Chem. Soc. Chem. Commun. pp. 432–434.  CrossRef Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWitty, D. R., Fleet, G. W. J., Vogt, K., Wilson, F. X., Wang, Y., Storer, R., Myers, P. L. & Wallis, C. J. (1990). Tetrahedron Lett. 33, 4787–4790.  CrossRef Web of Science Google Scholar
First citationYoda, H., Nakaseko, Y. & Takabe, K. (2002). Synlett, pp. 1532–1534.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o414-o415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds