organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-2,6-di­phenyl­piperidin-4-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 22 January 2009; accepted 28 January 2009; online 31 January 2009)

In the title moleclue, C19H21NO, the 4-piperidone ring adopts a chair conformation in which the two benzene rings and the methyl group attached to C atoms all have equatorial orientations. In the crystal structure, centrosymmetric dimers are formed through weak inter­molecular C—H⋯O hydrogen bonds [the dihedral angle between the aromatic rings is 58.51 (5)°].

Related literature

For general background, see: Badorrey et al. (1999[Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601-7612.]); Grishina et al. (1994[Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd. 30, 401-1426.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]). For a related crystal structure, see: Gayathri et al. (2008[Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973.]). For the synthetis, see: Noller & Baliah (1948[Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21NO

  • Mr = 279.37

  • Triclinic, [P \overline 1]

  • a = 5.9201 (2) Å

  • b = 10.9749 (3) Å

  • c = 12.8247 (3) Å

  • α = 80.2961 (12)°

  • β = 86.673 (2)°

  • γ = 76.4499 (11)°

  • V = 798.30 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 (2) K

  • 0.28 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.987

  • 12316 measured reflections

  • 3143 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.02

  • 3143 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.56 3.3535 (16) 139
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The synthesis of 4-piperidones is of current interest due to their potential medical applications (Grishina et al., 1994, Ponnuswamy et al., 2002). 4-Piperidones have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Various piperidones and piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidones are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al., 2001).

In the title molecule, C19H20NO (Fig. 1), the piperidine ring adopts a chair conformation (Cremer & Pople, 1975; Nardelli, 1995). The phenyl rings at positions 2 and 6 and the methyl group attached at position 3 all have equatorial orientations. In the related crystal structure of r-2,c-6-Bis(4-chlorophenyl)-t-3-isopropyl-1-nitrosopiperidin-4-one, the piperidine ring also adopts a chair conformation (Gayathri et al., 2008) but the three substituents on the C atoms of the ring are in axial orientations. In the crystal structure, centrosymmetric dimers are formed through weak intermolecular C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Badorrey et al. (1999); Grishina et al. (1994); Nalanishi et al. (1974); Perumal et al. (2001); Ponnuswamy et al. (2002). For a related crystal structure, see: Gayathri et al. (2008). For the synthetis, see: Noller & Baliah (1948). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983, 1995).

Experimental top

The sythesis was based on a procedure in the literature (Noller & Baliah, 1948). Benzaldehyde (0.20 mol), 3-methyl-2-butanone (0.10 mol) and ammonium acetate (0.10 mol) were dissolved in 80 ml of distilled ethanol and heated over a boiling water bath, with shaking until a yellow colour developed and ultimately changed to orange. The solution was left undisturbed for 14 h. The precipitated solid was filtered and purified by recrystallization from ethanol. The piperidone intermediate was then dissolved in acetone and was alkyalted with methyliodide in the presence of potassium carbonate.

Refinement top

All H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93, 0.97 and 0.96Å for aromatic, methylene and methyl H atoms, respectively and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with dashed lines indicating intermolecular C—H···O hydrogen bonds.
1,3-Dimethyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C19H21NOZ = 2
Mr = 279.37F(000) = 300
Triclinic, P1Dx = 1.162 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9201 (2) ÅCell parameters from 873 reflections
b = 10.9749 (3) Åθ = 1.9–20.8°
c = 12.8247 (3) ŵ = 0.07 mm1
α = 80.2961 (12)°T = 290 K
β = 86.673 (2)°Block, colorless
γ = 76.4499 (11)°0.28 × 0.21 × 0.18 mm
V = 798.30 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3143 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.943, Tmax = 0.987k = 1313
12316 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1409P]
where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H21NOγ = 76.4499 (11)°
Mr = 279.37V = 798.30 (4) Å3
Triclinic, P1Z = 2
a = 5.9201 (2) ÅMo Kα radiation
b = 10.9749 (3) ŵ = 0.07 mm1
c = 12.8247 (3) ÅT = 290 K
α = 80.2961 (12)°0.28 × 0.21 × 0.18 mm
β = 86.673 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3143 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2446 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.987Rint = 0.019
12316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3143 reflectionsΔρmin = 0.15 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17010 (18)0.40892 (9)0.73876 (8)0.0419 (3)
O10.25711 (17)0.47960 (11)1.03053 (7)0.0615 (3)
C10.1134 (2)0.54013 (12)0.76264 (10)0.0419 (3)
H10.04570.55820.79160.050*
C20.2788 (3)0.55376 (14)0.84570 (11)0.0532 (4)
H2A0.43360.54750.81460.064*
H2B0.22760.63700.86650.064*
C30.2882 (2)0.45443 (14)0.94154 (10)0.0485 (3)
C40.3367 (3)0.32119 (14)0.91755 (11)0.0532 (4)
H40.49230.30300.88500.064*
C50.1607 (2)0.31444 (12)0.83478 (10)0.0432 (3)
H50.00400.33390.86610.052*
C60.2066 (2)0.18211 (12)0.80603 (10)0.0467 (3)
C70.4060 (3)0.13480 (14)0.75020 (12)0.0571 (4)
H70.51530.18370.73190.069*
C80.4446 (3)0.01556 (15)0.72124 (14)0.0711 (5)
H80.57990.01480.68400.085*
C90.2867 (4)0.05793 (15)0.74677 (15)0.0748 (5)
H90.31260.13740.72610.090*
C100.0903 (4)0.01377 (16)0.80298 (17)0.0791 (5)
H100.01700.06390.82140.095*
C110.0495 (3)0.10595 (15)0.83308 (14)0.0656 (4)
H110.08460.13480.87170.079*
C120.1264 (2)0.63589 (12)0.66384 (10)0.0428 (3)
C130.0613 (3)0.73494 (13)0.63339 (12)0.0536 (4)
H130.19870.74190.67330.064*
C140.0475 (3)0.82404 (14)0.54407 (13)0.0658 (4)
H140.17520.89020.52450.079*
C150.1535 (3)0.81493 (15)0.48471 (13)0.0675 (5)
H150.16290.87510.42520.081*
C160.3413 (3)0.71672 (17)0.51319 (13)0.0687 (5)
H160.47760.71010.47250.082*
C170.3284 (3)0.62776 (15)0.60201 (12)0.0579 (4)
H170.45650.56160.62070.070*
C180.0031 (3)0.39902 (14)0.66175 (12)0.0623 (4)
H18A0.15040.41320.69280.093*
H18B0.04390.31580.64220.093*
H18C0.00690.46160.59990.093*
C190.3365 (4)0.22361 (19)1.01678 (14)0.0942 (7)
H19A0.43690.23681.06790.141*
H19B0.39100.13980.99930.141*
H19C0.18140.23261.04580.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0505 (6)0.0408 (5)0.0341 (6)0.0089 (5)0.0065 (4)0.0056 (4)
O10.0534 (6)0.0987 (8)0.0390 (6)0.0236 (5)0.0017 (4)0.0217 (5)
C10.0439 (7)0.0439 (7)0.0377 (7)0.0076 (5)0.0009 (5)0.0097 (5)
C20.0664 (9)0.0558 (8)0.0426 (8)0.0190 (7)0.0068 (6)0.0132 (6)
C30.0408 (7)0.0708 (9)0.0369 (7)0.0152 (6)0.0045 (5)0.0120 (6)
C40.0567 (8)0.0602 (8)0.0391 (7)0.0083 (7)0.0098 (6)0.0021 (6)
C50.0426 (7)0.0471 (7)0.0378 (7)0.0091 (5)0.0007 (5)0.0032 (5)
C60.0483 (8)0.0455 (7)0.0437 (7)0.0102 (6)0.0050 (6)0.0006 (6)
C70.0632 (9)0.0483 (8)0.0588 (9)0.0138 (7)0.0082 (7)0.0069 (7)
C80.0846 (12)0.0519 (9)0.0729 (11)0.0073 (8)0.0069 (9)0.0134 (8)
C90.0964 (14)0.0446 (8)0.0832 (12)0.0136 (9)0.0167 (10)0.0081 (8)
C100.0831 (13)0.0558 (9)0.1021 (14)0.0323 (9)0.0123 (11)0.0036 (10)
C110.0572 (9)0.0586 (9)0.0795 (11)0.0193 (7)0.0017 (8)0.0004 (8)
C120.0511 (7)0.0410 (6)0.0388 (7)0.0118 (5)0.0038 (5)0.0105 (5)
C130.0614 (9)0.0448 (7)0.0522 (8)0.0046 (6)0.0024 (6)0.0112 (6)
C140.0908 (12)0.0407 (7)0.0607 (10)0.0037 (7)0.0145 (9)0.0052 (7)
C150.1055 (14)0.0528 (9)0.0486 (9)0.0318 (9)0.0065 (9)0.0003 (7)
C160.0750 (11)0.0822 (11)0.0516 (9)0.0312 (9)0.0058 (8)0.0018 (8)
C170.0536 (9)0.0651 (9)0.0509 (9)0.0106 (7)0.0006 (6)0.0018 (7)
C180.0852 (11)0.0505 (8)0.0540 (9)0.0167 (7)0.0292 (8)0.0049 (7)
C190.146 (2)0.0797 (12)0.0527 (11)0.0258 (12)0.0310 (11)0.0125 (9)
Geometric parameters (Å, º) top
N1—C181.4711 (16)C9—C101.365 (3)
N1—C51.4777 (15)C9—H90.9300
N1—C11.4800 (15)C10—C111.395 (2)
O1—C31.2128 (15)C10—H100.9300
C1—C121.5145 (18)C11—H110.9300
C1—C21.5363 (18)C12—C131.3820 (19)
C1—H10.9800C12—C171.390 (2)
C2—C31.493 (2)C13—C141.387 (2)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.367 (2)
C3—C41.503 (2)C14—H140.9300
C4—C191.519 (2)C15—C161.372 (2)
C4—C51.5520 (18)C15—H150.9300
C4—H40.9800C16—C171.381 (2)
C5—C61.5175 (18)C16—H160.9300
C5—H50.9800C17—H170.9300
C6—C111.383 (2)C18—H18A0.9600
C6—C71.384 (2)C18—H18B0.9600
C7—C81.384 (2)C18—H18C0.9600
C7—H70.9300C19—H19A0.9600
C8—C91.364 (3)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C18—N1—C5109.46 (10)C8—C9—C10119.37 (16)
C18—N1—C1108.63 (10)C8—C9—H9120.3
C5—N1—C1111.85 (9)C10—C9—H9120.3
N1—C1—C12111.33 (10)C9—C10—C11120.50 (16)
N1—C1—C2110.45 (10)C9—C10—H10119.7
C12—C1—C2109.68 (10)C11—C10—H10119.7
N1—C1—H1108.4C6—C11—C10120.59 (16)
C12—C1—H1108.4C6—C11—H11119.7
C2—C1—H1108.4C10—C11—H11119.7
C3—C2—C1112.04 (11)C13—C12—C17118.07 (13)
C3—C2—H2A109.2C13—C12—C1120.95 (12)
C1—C2—H2A109.2C17—C12—C1120.97 (12)
C3—C2—H2B109.2C12—C13—C14120.86 (15)
C1—C2—H2B109.2C12—C13—H13119.6
H2A—C2—H2B107.9C14—C13—H13119.6
O1—C3—C2122.76 (13)C15—C14—C13120.18 (15)
O1—C3—C4123.25 (13)C15—C14—H14119.9
C2—C3—C4113.99 (11)C13—C14—H14119.9
C3—C4—C19112.28 (13)C14—C15—C16119.84 (15)
C3—C4—C5108.87 (11)C14—C15—H15120.1
C19—C4—C5112.70 (13)C16—C15—H15120.1
C3—C4—H4107.6C15—C16—C17120.21 (16)
C19—C4—H4107.6C15—C16—H16119.9
C5—C4—H4107.6C17—C16—H16119.9
N1—C5—C6110.17 (10)C16—C17—C12120.83 (14)
N1—C5—C4110.93 (10)C16—C17—H17119.6
C6—C5—C4110.79 (10)C12—C17—H17119.6
N1—C5—H5108.3N1—C18—H18A109.5
C6—C5—H5108.3N1—C18—H18B109.5
C4—C5—H5108.3H18A—C18—H18B109.5
C11—C6—C7117.95 (13)N1—C18—H18C109.5
C11—C6—C5121.26 (13)H18A—C18—H18C109.5
C7—C6—C5120.78 (12)H18B—C18—H18C109.5
C6—C7—C8120.81 (15)C4—C19—H19A109.5
C6—C7—H7119.6C4—C19—H19B109.5
C8—C7—H7119.6H19A—C19—H19B109.5
C9—C8—C7120.77 (17)C4—C19—H19C109.5
C9—C8—H8119.6H19A—C19—H19C109.5
C7—C8—H8119.6H19B—C19—H19C109.5
C18—N1—C1—C1259.74 (14)N1—C5—C6—C755.01 (16)
C5—N1—C1—C12179.33 (10)C4—C5—C6—C768.12 (16)
C18—N1—C1—C2178.16 (11)C11—C6—C7—C80.9 (2)
C5—N1—C1—C257.22 (13)C5—C6—C7—C8178.08 (14)
N1—C1—C2—C352.14 (15)C6—C7—C8—C90.2 (3)
C12—C1—C2—C3175.21 (11)C7—C8—C9—C101.1 (3)
C1—C2—C3—O1127.65 (13)C8—C9—C10—C110.8 (3)
C1—C2—C3—C451.65 (16)C7—C6—C11—C101.1 (2)
O1—C3—C4—C191.3 (2)C5—C6—C11—C10177.82 (14)
C2—C3—C4—C19178.02 (14)C9—C10—C11—C60.3 (3)
O1—C3—C4—C5126.78 (13)N1—C1—C12—C13124.49 (13)
C2—C3—C4—C552.51 (15)C2—C1—C12—C13112.96 (14)
C18—N1—C5—C656.39 (14)N1—C1—C12—C1756.44 (15)
C1—N1—C5—C6176.84 (10)C2—C1—C12—C1766.11 (15)
C18—N1—C5—C4179.44 (11)C17—C12—C13—C140.4 (2)
C1—N1—C5—C460.11 (13)C1—C12—C13—C14178.66 (12)
C3—C4—C5—N155.96 (14)C12—C13—C14—C150.0 (2)
C19—C4—C5—N1178.79 (13)C13—C14—C15—C160.5 (2)
C3—C4—C5—C6178.65 (11)C14—C15—C16—C170.5 (2)
C19—C4—C5—C656.09 (17)C15—C16—C17—C120.0 (2)
N1—C5—C6—C11123.92 (14)C13—C12—C17—C160.5 (2)
C4—C5—C6—C11112.95 (15)C1—C12—C17—C16178.65 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.563.3535 (16)139
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H21NO
Mr279.37
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)5.9201 (2), 10.9749 (3), 12.8247 (3)
α, β, γ (°)80.2961 (12), 86.673 (2), 76.4499 (11)
V3)798.30 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
12316, 3143, 2446
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.02
No. of reflections3143
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.563.3535 (16)138.5
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at the IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBadorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd. 30, 401–1426.  Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNoller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds