organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o416-o417

4-Chloro-N-(4-chloro­phenyl­sulfon­yl)-N-(3-oxo-2,3-di­hydro-1,2-benziso­thia­zol-2-yl)benzene­sulfonamide

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Viale G. P. Usberti 17/A, Universitá di Parma, I-43100 Parma, Italy, and bDipartimento Farmaceutico, Viale G. P. Usberti 27/A, Universitá di Parma, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 22 January 2009; accepted 26 January 2009; online 31 January 2009)

In the title compound, C19H12Cl2N2O5S3, the benzene rings of the chloro­phenyl­sulfonyl groups form a dihedral angle of 35.85 (8)° and are inclined at angles of 23.51 (6) and 59.22 (6)° with respect to the essentially planar benzisothia­zole ring system [maximum deviation = 0.030 (2) Å]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal packing, mol­ecules are linked into chains parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions, with centroid–centroid distances of 3.592 (5) Å.

Related literature

For the synthesis and biological activity of 1,2-benzisothia­zol-3(2H)-ones and 2-amino-1,2-benzisothia­zol-3(2H)-one derivatives, see: Clerici et al. (2007[Clerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem. 9, 179-264.]); Siegemund et al. (2002[Siegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep. 23, 279-319.]); Vicini et al. (1997[Vicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res. 47, 1218-1221.]). For the synthesis of the title compound, see: Vicini et al. (2009[Vicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem.. Submitted.]). For the crystal structures of related benzisothia­zole compounds, see: Cavalca et al. (1970[Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629-638.]); Ranganathan et al. (2002[Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861-2874.]); Steinfeld & Kersting (2006[Steinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem. 632, 2010-2016.]); Kim et al. (1996[Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337-5340.]); Xu et al. (2006[Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496-o497.]); Sarma & Mugesh (2007[Sarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc. 129, 8872-8881.]); Kolberg et al. (1999[Kolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem. 36, 1081-1086.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12Cl2N2O5S3

  • Mr = 515.39

  • Triclinic, [P \overline 1]

  • a = 9.5358 (12) Å

  • b = 10.7757 (14) Å

  • c = 11.0393 (14) Å

  • α = 102.719 (2)°

  • β = 94.385 (3)°

  • γ = 105.598 (2)°

  • V = 1054.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 295 (2) K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.927

  • 10953 measured reflections

  • 3930 independent reflections

  • 2267 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.060

  • S = 0.94

  • 3930 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.42 3.275 (4) 153
C5—H5⋯O2i 0.93 2.58 3.353 (4) 140
C6—H6⋯O3ii 0.93 2.58 3.289 (3) 133
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Among 1,2-benzisothiazol-3(2H)-ones, a class of compounds with a wide spectrum of biological activities (Clerici et al., 2007; Siegemund et al., 2002), 2-amino-1,2-benzisothiazol-3(2H)-one derivatives have a rather recent history and 2-amino-1,2-benzisothiazol-3(2H)-one was first synthesized by our group in 1997 (Vicini et al., 1997). Due to their peculiar reactivity, 2-amino-1,2-benzisothiazol-3(2H)-one derivatives have recently emerged as effective antiplatelet, spasmolytic and antimicrobial agents (Clerici et al., 2007; Siegemund et al., 2002). The therapeutic significance of the 2-amino-1,2-benzisothiazol-3(2H)-one ring system with suitably functionalized substituents has encorauged us to develop novel compounds. The title compound was obtained unintentionally as a by-product during the synthesis of 2-(benzenesulfonyl)amino-1,2-benzisothiazol-3(2H)-ones that have been demonstrated to possess anti-HIV-1 activity against wild type virus and against viral strains carrying clinically relevant mutations (Vicini et al., 2008). The unexpected 2-(bisphenylsulfonyl)amino-1,2-benzisothiazol-3(2H)-ones, subjected to biological evaluation as well, resulted fairly active and, interestingly, endowed with lower cytotoxicity with respect to their monophenylsulfonyl substituted counterparts. In view of the structure-activity relationship study of the novel 1,2-benzisothiazol-3(2H)-one benzenesulfonamides aimed at optimizing their antiretroviral potency, the representative title compound was synthesized and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are unexceptional. The S1—N1 and S1—C7 bond distances within the benzoisothiazole ring system are 1.7347 (19) and 1.744 (2) Å respectively, in good agreement with those reported is related compounds (Cavalca et al., 1970; Ranganathan et al., 2002; Steinfeld & Kersting, 2006; Kim et al., 1996; Xu et al., 2006; Sarma & Mugesh, 2007). The N1—N2 bond distance (1.381 (2) Å) is not significantly different from the corresponding distance in 4,5-dimethyl-2-(3-nitrobenzenesulfonylamino)isothiazol-3(2H)-one 1,1-dioxide (1.387 (4) Å; Kolberg et al., 1999). The C8–C13 and C14–C19 benzene rings form a dihedral angle of 35.85 (8)° and are tilted by 23.51 (6) and 59.22 (6)° with respect to the essentially planar benzoisothiazole rings system (maximum deviation 0.030 (2) Å for atom N1). The molecular structure is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal packing (Fig. 2), molecules are linked into chains running parallel to the a axis by intermolecular C—H···O hydrogen interactions (Table 1) and π-π stacking interactions occurring between the benzene rings of centrosymmetrically related benzisothiazole rings, with a centroid-to-centroid separation of 3.592 (5) Å, a perpendicular interplanar distance of 3.514 (5) Å and a centroid-centroid offset of 0.746 (4) Å (symmetry code linking the adjacent rings: 1 - x, -y, 1 - z).

Related literature top

For the synthesis and biological activities of 1,2-benzisothiazol-3(2H)-ones and 2-amino-1,2-benzisothiazol-3(2H)-one derivatives, see: Clerici et al. (2007); Siegemund et al. (2002); Vicini et al. (1997). For the synthesis of the title compound, see: Vicini et al. (2008). For the crystal structure of related benzisothiazole compounds, see: Cavalca et al. (1970); Ranganathan et al. (2002); Steinfeld & Kersting (2006); Kim et al. (1996); Xu et al. (2006); Sarma & Mugesh (2007); Kolberg et al. (1999).

Experimental top

The title compound was synthesized by reaction of 2-amino-1,2-benzisothiazol-3(2H)-one (10 mmol) with 4-chlorobenzenesulfonyl chloride (11 mmol) in pyridine (8 ml) for 2 h at 273K, resulting in a mixture of 4-chloro-N-(3-oxo-1,2-benzisothiazol-2(3H)-yl)benzenesulfonamide and 4-chloro-N-[(4-chlorophenyl)sulfonyl]-N-(3-oxo-1,2-benzisothiazol-2(3H)-yl)benzenesulfonamide (% yield ratio 33/66). Indeed, once the monophenylsulfonyl product is formed, a subsequent sulfonylation yielding the bisphenylsulfonyl derivative readily occurs, by the action of the electrophilic benzenesulfonyl chloride. The two products were simply separated because of the acidic character of the former. The crude product was poured into water (30 ml) and treated with a 10% aqueous sodium carbonate under stirring for 1 h, affording the title compound as insoluble solid that was collected by filtration. Pale yellow crystals suitable for X-ray analysis were obtained on slow evaporation of an ethanol solution at room temperature.

Refinement top

All H atoms were placed at calculated positions and refined in the riding model approximation, with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately along the a axis. Red and green dashed lines indicate C–H···O hydrogen bonds and π-π stacking interactions, respectively.
4-Chloro-N-(4-chlorophenylsulfonyl)-N-(3-oxo-2,3-dihydro-1,2-benzisothiazol-2-yl)benzenesulfonamide top
Crystal data top
C19H12Cl2N2O5S3Z = 2
Mr = 515.39F(000) = 524
Triclinic, P1Dx = 1.623 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5358 (12) ÅCell parameters from 1477 reflections
b = 10.7757 (14) Åθ = 4.8–47.8°
c = 11.0393 (14) ŵ = 0.64 mm1
α = 102.719 (2)°T = 295 K
β = 94.385 (3)°Prism, pale yellow
γ = 105.598 (2)°0.22 × 0.14 × 0.12 mm
V = 1054.6 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3930 independent reflections
Radiation source: fine-focus sealed tube2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.872, Tmax = 0.927k = 1313
10953 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0145P)2]
where P = (Fo2 + 2Fc2)/3
3930 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H12Cl2N2O5S3γ = 105.598 (2)°
Mr = 515.39V = 1054.6 (2) Å3
Triclinic, P1Z = 2
a = 9.5358 (12) ÅMo Kα radiation
b = 10.7757 (14) ŵ = 0.64 mm1
c = 11.0393 (14) ÅT = 295 K
α = 102.719 (2)°0.22 × 0.14 × 0.12 mm
β = 94.385 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2267 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.927Rint = 0.037
10953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
3930 reflectionsΔρmin = 0.22 e Å3
280 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30528 (10)0.89637 (7)0.94340 (8)0.0862 (3)
Cl20.37123 (10)0.47508 (9)1.37354 (8)0.1051 (3)
S10.13674 (7)0.02399 (6)0.62308 (7)0.0550 (2)
S20.14511 (8)0.31023 (7)0.62932 (7)0.0539 (2)
S30.01047 (7)0.21135 (7)0.84324 (7)0.0515 (2)
O10.43050 (18)0.27563 (17)0.83915 (17)0.0630 (5)
O20.2660 (2)0.28393 (17)0.57181 (16)0.0677 (5)
O30.00450 (19)0.27802 (16)0.55643 (16)0.0687 (6)
O40.07297 (17)0.29573 (16)0.81554 (16)0.0605 (5)
O50.05678 (18)0.07361 (16)0.83264 (17)0.0639 (5)
N10.2112 (2)0.12783 (18)0.73222 (19)0.0501 (6)
N20.1337 (2)0.22006 (18)0.74166 (18)0.0476 (5)
C10.3647 (3)0.1683 (3)0.7692 (2)0.0478 (7)
C20.4188 (3)0.0593 (2)0.7077 (2)0.0451 (6)
C30.5641 (3)0.0591 (3)0.7197 (2)0.0554 (7)
H30.63670.13090.77180.066*
C40.5991 (3)0.0492 (3)0.6532 (3)0.0654 (8)
H40.69640.05070.66000.078*
C50.4911 (3)0.1560 (3)0.5762 (3)0.0638 (8)
H50.51740.22880.53300.077*
C60.3462 (3)0.1582 (3)0.5614 (2)0.0575 (7)
H60.27440.23060.50900.069*
C70.3110 (3)0.0472 (2)0.6283 (2)0.0462 (6)
C80.1916 (3)0.4758 (2)0.7178 (2)0.0477 (7)
C90.0978 (3)0.5504 (3)0.7018 (2)0.0560 (7)
H90.01090.51320.64560.067*
C100.1350 (3)0.6819 (3)0.7707 (3)0.0611 (8)
H100.07390.73420.76030.073*
C110.2626 (3)0.7341 (2)0.8544 (2)0.0561 (7)
C120.3557 (3)0.6602 (3)0.8706 (3)0.0657 (8)
H120.44190.69760.92750.079*
C130.3203 (3)0.5293 (3)0.8017 (3)0.0614 (8)
H130.38260.47790.81170.074*
C140.1174 (2)0.2839 (2)0.9908 (2)0.0450 (6)
C150.1572 (3)0.2053 (3)1.0622 (3)0.0630 (8)
H150.13080.11341.03120.076*
C160.2365 (3)0.2648 (3)1.1799 (3)0.0772 (9)
H160.26300.21301.22950.093*
C170.2764 (3)0.4011 (3)1.2242 (3)0.0632 (8)
C180.2397 (3)0.4797 (3)1.1525 (3)0.0593 (8)
H180.26940.57181.18260.071*
C190.1583 (3)0.4206 (2)1.0355 (3)0.0531 (7)
H190.13090.47260.98660.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1137 (7)0.0495 (5)0.0768 (6)0.0059 (4)0.0144 (5)0.0001 (4)
Cl20.1116 (7)0.1090 (7)0.0712 (6)0.0070 (6)0.0208 (5)0.0175 (5)
S10.0427 (4)0.0480 (4)0.0663 (5)0.0159 (3)0.0044 (4)0.0012 (4)
S20.0533 (5)0.0505 (5)0.0519 (5)0.0148 (4)0.0004 (4)0.0035 (4)
S30.0382 (4)0.0465 (4)0.0652 (5)0.0107 (3)0.0072 (4)0.0067 (4)
O10.0498 (11)0.0554 (12)0.0689 (13)0.0092 (10)0.0101 (10)0.0007 (10)
O20.0727 (13)0.0704 (13)0.0658 (13)0.0290 (11)0.0304 (11)0.0121 (10)
O30.0659 (12)0.0604 (12)0.0646 (13)0.0196 (10)0.0240 (10)0.0055 (10)
O40.0441 (10)0.0671 (12)0.0743 (13)0.0273 (10)0.0043 (9)0.0136 (10)
O50.0517 (11)0.0423 (11)0.0842 (14)0.0009 (9)0.0102 (10)0.0064 (10)
N10.0398 (13)0.0440 (13)0.0617 (15)0.0170 (11)0.0009 (11)0.0002 (11)
N20.0433 (12)0.0427 (13)0.0591 (14)0.0168 (10)0.0119 (11)0.0108 (11)
C10.0416 (16)0.0511 (18)0.0499 (18)0.0127 (14)0.0007 (14)0.0139 (14)
C20.0411 (16)0.0508 (17)0.0444 (17)0.0155 (14)0.0053 (13)0.0119 (13)
C30.0402 (16)0.0617 (19)0.068 (2)0.0166 (14)0.0050 (15)0.0228 (16)
C40.0469 (18)0.081 (2)0.086 (2)0.0333 (18)0.0151 (17)0.0384 (19)
C50.065 (2)0.067 (2)0.072 (2)0.0377 (18)0.0179 (18)0.0175 (17)
C60.0581 (19)0.0574 (19)0.0596 (19)0.0262 (15)0.0077 (15)0.0086 (15)
C70.0459 (16)0.0517 (17)0.0457 (17)0.0204 (14)0.0083 (14)0.0136 (14)
C80.0442 (16)0.0445 (16)0.0512 (17)0.0087 (13)0.0069 (14)0.0111 (13)
C90.0483 (17)0.0503 (18)0.065 (2)0.0112 (14)0.0023 (15)0.0121 (15)
C100.0604 (19)0.0529 (19)0.071 (2)0.0164 (16)0.0114 (17)0.0163 (16)
C110.0647 (19)0.0431 (17)0.0545 (19)0.0032 (15)0.0185 (16)0.0121 (14)
C120.0598 (19)0.056 (2)0.064 (2)0.0015 (16)0.0087 (16)0.0054 (16)
C130.0516 (17)0.0563 (19)0.071 (2)0.0160 (15)0.0043 (16)0.0104 (16)
C140.0384 (15)0.0426 (16)0.0527 (17)0.0126 (13)0.0082 (13)0.0080 (14)
C150.065 (2)0.0434 (17)0.081 (2)0.0162 (15)0.0061 (18)0.0180 (17)
C160.079 (2)0.069 (2)0.086 (3)0.0211 (19)0.006 (2)0.031 (2)
C170.0556 (18)0.068 (2)0.062 (2)0.0124 (16)0.0010 (15)0.0160 (17)
C180.0550 (18)0.0442 (17)0.070 (2)0.0097 (14)0.0032 (16)0.0049 (16)
C190.0511 (17)0.0461 (18)0.0614 (19)0.0136 (14)0.0074 (15)0.0134 (15)
Geometric parameters (Å, º) top
Cl1—C111.729 (3)C5—H50.9300
Cl2—C171.726 (3)C6—C71.399 (3)
S1—N11.7347 (19)C6—H60.9300
S1—C71.744 (2)C8—C91.379 (3)
S2—O21.4214 (17)C8—C131.381 (3)
S2—O31.4239 (16)C9—C101.388 (3)
S2—N21.729 (2)C9—H90.9300
S2—C81.754 (2)C10—C111.371 (3)
S3—O41.4240 (16)C10—H100.9300
S3—O51.4242 (16)C11—C121.368 (3)
S3—N21.684 (2)C12—C131.383 (3)
S3—C141.750 (3)C12—H120.9300
O1—C11.213 (3)C13—H130.9300
N1—N21.381 (2)C14—C151.379 (3)
N1—C11.409 (3)C14—C191.381 (3)
C1—C21.461 (3)C15—C161.376 (4)
C2—C31.383 (3)C15—H150.9300
C2—C71.388 (3)C16—C171.377 (4)
C3—C41.371 (3)C16—H160.9300
C3—H30.9300C17—C181.370 (3)
C4—C51.380 (3)C18—C191.377 (3)
C4—H40.9300C18—H180.9300
C5—C61.371 (3)C19—H190.9300
N1—S1—C789.10 (11)C2—C7—S1113.04 (18)
O2—S2—O3120.38 (11)C6—C7—S1126.2 (2)
O2—S2—N2102.15 (10)C9—C8—C13121.2 (2)
O3—S2—N2109.77 (11)C9—C8—S2118.9 (2)
O2—S2—C8110.89 (11)C13—C8—S2119.9 (2)
O3—S2—C8108.61 (12)C8—C9—C10119.0 (2)
N2—S2—C8103.62 (11)C8—C9—H9120.5
O4—S3—O5121.61 (11)C10—C9—H9120.5
O4—S3—N2104.10 (10)C11—C10—C9119.4 (3)
O5—S3—N2106.59 (10)C11—C10—H10120.3
O4—S3—C14109.51 (11)C9—C10—H10120.3
O5—S3—C14109.23 (12)C12—C11—C10121.6 (3)
N2—S3—C14104.29 (10)C12—C11—Cl1119.2 (2)
N2—N1—C1120.88 (19)C10—C11—Cl1119.1 (2)
N2—N1—S1117.96 (15)C11—C12—C13119.4 (3)
C1—N1—S1116.69 (17)C11—C12—H12120.3
N1—N2—S3115.94 (15)C13—C12—H12120.3
N1—N2—S2117.41 (15)C8—C13—C12119.3 (3)
S3—N2—S2125.38 (12)C8—C13—H13120.4
O1—C1—N1122.8 (2)C12—C13—H13120.4
O1—C1—C2130.4 (2)C15—C14—C19120.8 (2)
N1—C1—C2106.9 (2)C15—C14—S3120.4 (2)
C3—C2—C7120.6 (2)C19—C14—S3118.8 (2)
C3—C2—C1125.3 (2)C16—C15—C14119.1 (3)
C7—C2—C1114.1 (2)C16—C15—H15120.5
C4—C3—C2118.7 (3)C14—C15—H15120.5
C4—C3—H3120.7C15—C16—C17119.9 (3)
C2—C3—H3120.7C15—C16—H16120.0
C3—C4—C5120.6 (2)C17—C16—H16120.0
C3—C4—H4119.7C18—C17—C16121.2 (3)
C5—C4—H4119.7C18—C17—Cl2119.0 (2)
C6—C5—C4122.1 (3)C16—C17—Cl2119.9 (2)
C6—C5—H5119.0C17—C18—C19119.2 (3)
C4—C5—H5119.0C17—C18—H18120.4
C5—C6—C7117.2 (3)C19—C18—H18120.4
C5—C6—H6121.4C18—C19—C14119.9 (3)
C7—C6—H6121.4C18—C19—H19120.1
C2—C7—C6120.8 (2)C14—C19—H19120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.423.275 (4)153
C5—H5···O2i0.932.583.353 (4)140
C6—H6···O3ii0.932.583.289 (3)133
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H12Cl2N2O5S3
Mr515.39
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.5358 (12), 10.7757 (14), 11.0393 (14)
α, β, γ (°)102.719 (2), 94.385 (3), 105.598 (2)
V3)1054.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.22 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.872, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
10953, 3930, 2267
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.060, 0.94
No. of reflections3930
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.423.275 (4)153
C5—H5···O2i0.932.583.353 (4)140
C6—H6···O3ii0.932.583.289 (3)133
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

Financial support from the Italian MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629–638.  CAS Google Scholar
First citationClerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem. 9, 179–264.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationKim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337–5340.  CSD CrossRef CAS Web of Science Google Scholar
First citationKolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem. 36, 1081–1086.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRanganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc. 129, 8872–8881.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep. 23, 279–319.  CrossRef CAS Google Scholar
First citationSteinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem. 632, 2010–2016.  Web of Science CSD CrossRef CAS Google Scholar
First citationVicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem.. Submitted.  Google Scholar
First citationVicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res. 47, 1218–1221.  CAS Google Scholar
First citationXu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o416-o417
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds