organic compounds
4-Methyl-N-(3-oxo-2,3-dihydro-1,2-benzisothiazol-2-yl)benzenesulfonamide
aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Viale G. P. Usberti 17/A, Universitá di Parma, I-43100 Parma, Italy, and bDipartimento Farmaceutico, Viale G. P. Usberti 27/A, Universitá di Parma, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
In the title molecule, C14H12N2O3S2, the benzisothiazolone ring system is essentially planar and forms a dihedral angle of 67.37 (6)° with the plane of the benzene ring. In the molecules are linked via intermolecular N—H⋯O and C—H⋯O hydrogen bonds to form chains parallel to the b axis.
Related literature
For the chemical and biological properties of 1,2-benzisothiazol-3(2H)-one derivatives, see: Clerici et al. (2007); Siegemund et al. (2002). For 2-amino-1,2-benzisothiazol-3(2H)-one derivatives with antiplatelet/spasmolitic effects, see: Vicini et al. (1997,2000). For derivatives with antimicrobial properties, see: Vicini et al. (2002); Zani et al. (2004). For the synthesis of the title compound, see: Vicini et al. (2009). For the crystal structures of related compounds, see: Cavalca et al. (1970); Ranganathan et al. (2002); Steinfeld & Kersting (2006); Kim et al. (1996); Xu et al. (2006); Sarma & Mugesh (2007); Kolberg et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
10.1107/S1600536809003201/lh2764sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003201/lh2764Isup2.hkl
The title compound was synthesized as described elsewhere (Vicini et al., 2009). Freshly prepared chlorocarbonylsulfenylchloride (18 mmol) in dried CCl4 (40 ml) was added dropwise to a stirred, ice-cooled solution of 2-tosylhydrazine (20 mmol) in pyridine (18 ml). After 2 h the reaction mixture was allowed to cool to room temperature and the crude product was filtered, purified by base-acid (Na2CO3—HCl) exchange and silica-gel
(eluent CH2Cl2—EtOH 95:5 v/v). Pale yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.The H atoms bound to the N2 atom was located in a difference Fourier map and refined isotropically with the N—H distance constrained to 0.87 (1) Å. All other H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).C14H12N2O3S2 | F(000) = 664 |
Mr = 320.38 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1208 reflections |
a = 8.051 (3) Å | θ = 3.1–54.7° |
b = 7.655 (3) Å | µ = 0.38 mm−1 |
c = 23.91 (1) Å | T = 296 K |
β = 98.490 (8)° | Prism, pale yellow |
V = 1457.4 (10) Å3 | 0.28 × 0.26 × 0.12 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 3521 independent reflections |
Radiation source: fine-focus sealed tube | 1888 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 28.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −10→10 |
Tmin = 0.892, Tmax = 0.957 | k = −10→10 |
17685 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3 |
3521 reflections | (Δ/σ)max < 0.001 |
194 parameters | Δρmax = 0.23 e Å−3 |
1 restraint | Δρmin = −0.28 e Å−3 |
C14H12N2O3S2 | V = 1457.4 (10) Å3 |
Mr = 320.38 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.051 (3) Å | µ = 0.38 mm−1 |
b = 7.655 (3) Å | T = 296 K |
c = 23.91 (1) Å | 0.28 × 0.26 × 0.12 mm |
β = 98.490 (8)° |
Bruker SMART 1000 CCD area-detector diffractometer | 3521 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 1888 reflections with I > 2σ(I) |
Tmin = 0.892, Tmax = 0.957 | Rint = 0.041 |
17685 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.23 e Å−3 |
3521 reflections | Δρmin = −0.28 e Å−3 |
194 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07092 (8) | 0.54275 (7) | 0.15129 (2) | 0.0674 (2) | |
S2 | −0.38794 (7) | 0.64261 (7) | 0.12617 (2) | 0.06196 (18) | |
O1 | −0.25352 (19) | 0.2912 (2) | 0.21942 (6) | 0.0740 (4) | |
O2 | −0.4086 (2) | 0.48129 (18) | 0.09686 (6) | 0.0795 (5) | |
O3 | −0.5189 (2) | 0.7130 (2) | 0.15313 (7) | 0.0826 (5) | |
N1 | −0.1134 (2) | 0.4976 (2) | 0.17603 (7) | 0.0585 (5) | |
N2 | −0.2283 (3) | 0.6277 (2) | 0.17766 (8) | 0.0692 (5) | |
H2 | −0.247 (3) | 0.670 (3) | 0.2089 (6) | 0.085 (8)* | |
C1 | −0.1300 (3) | 0.3352 (2) | 0.19864 (8) | 0.0524 (5) | |
C2 | 0.0211 (2) | 0.2380 (2) | 0.19334 (8) | 0.0469 (5) | |
C3 | 0.0556 (3) | 0.0671 (3) | 0.21027 (8) | 0.0584 (5) | |
H3 | −0.0221 | 0.0028 | 0.2269 | 0.070* | |
C4 | 0.2040 (3) | −0.0051 (3) | 0.20233 (10) | 0.0702 (6) | |
H4 | 0.2268 | −0.1211 | 0.2122 | 0.084* | |
C5 | 0.3219 (3) | 0.0936 (3) | 0.17950 (10) | 0.0796 (7) | |
H5 | 0.4249 | 0.0432 | 0.1758 | 0.096* | |
C6 | 0.2925 (3) | 0.2611 (3) | 0.16232 (10) | 0.0722 (6) | |
H6 | 0.3724 | 0.3250 | 0.1467 | 0.087* | |
C7 | 0.1378 (3) | 0.3337 (2) | 0.16900 (8) | 0.0527 (5) | |
C8 | −0.3251 (2) | 0.7991 (3) | 0.08016 (8) | 0.0544 (5) | |
C9 | −0.3198 (3) | 0.7587 (3) | 0.02474 (10) | 0.0815 (7) | |
H9 | −0.3454 | 0.6466 | 0.0111 | 0.098* | |
C10 | −0.2757 (4) | 0.8877 (4) | −0.01057 (10) | 0.0977 (9) | |
H10 | −0.2729 | 0.8606 | −0.0483 | 0.117* | |
C11 | −0.2362 (3) | 1.0529 (4) | 0.00758 (12) | 0.0789 (7) | |
C12 | −0.2448 (3) | 1.0894 (3) | 0.06352 (11) | 0.0793 (7) | |
H12 | −0.2203 | 1.2017 | 0.0772 | 0.095* | |
C13 | −0.2886 (3) | 0.9645 (3) | 0.09934 (10) | 0.0708 (6) | |
H13 | −0.2935 | 0.9922 | 0.1369 | 0.085* | |
C14 | −0.1871 (4) | 1.1911 (4) | −0.03204 (12) | 0.1226 (12) | |
H14A | −0.1661 | 1.2993 | −0.0120 | 0.184* | |
H14B | −0.2766 | 1.2068 | −0.0629 | 0.184* | |
H14C | −0.0874 | 1.1549 | −0.0464 | 0.184* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0837 (4) | 0.0494 (3) | 0.0742 (4) | −0.0037 (3) | 0.0287 (3) | 0.0081 (3) |
S2 | 0.0711 (4) | 0.0537 (3) | 0.0623 (4) | 0.0114 (3) | 0.0140 (3) | 0.0072 (3) |
O1 | 0.0561 (9) | 0.0904 (11) | 0.0790 (10) | 0.0106 (8) | 0.0222 (8) | 0.0324 (9) |
O2 | 0.1055 (13) | 0.0531 (9) | 0.0784 (11) | −0.0047 (8) | 0.0092 (9) | −0.0016 (8) |
O3 | 0.0789 (11) | 0.0863 (11) | 0.0896 (12) | 0.0260 (9) | 0.0360 (9) | 0.0181 (9) |
N1 | 0.0668 (12) | 0.0489 (10) | 0.0626 (11) | 0.0159 (9) | 0.0193 (9) | 0.0127 (8) |
N2 | 0.0929 (14) | 0.0660 (12) | 0.0483 (11) | 0.0358 (11) | 0.0092 (10) | 0.0007 (10) |
C1 | 0.0538 (13) | 0.0556 (13) | 0.0484 (12) | 0.0027 (10) | 0.0099 (10) | 0.0099 (10) |
C2 | 0.0457 (12) | 0.0437 (11) | 0.0508 (11) | 0.0001 (9) | 0.0055 (9) | 0.0021 (9) |
C3 | 0.0598 (14) | 0.0514 (13) | 0.0610 (13) | 0.0000 (10) | −0.0004 (11) | 0.0053 (10) |
C4 | 0.0759 (17) | 0.0548 (13) | 0.0760 (16) | 0.0139 (13) | −0.0013 (13) | −0.0038 (12) |
C5 | 0.0670 (16) | 0.0808 (18) | 0.0911 (18) | 0.0205 (14) | 0.0121 (14) | −0.0180 (14) |
C6 | 0.0622 (15) | 0.0765 (16) | 0.0834 (16) | −0.0070 (13) | 0.0287 (13) | −0.0146 (14) |
C7 | 0.0552 (13) | 0.0498 (12) | 0.0543 (12) | −0.0030 (10) | 0.0122 (10) | −0.0045 (9) |
C8 | 0.0579 (13) | 0.0556 (12) | 0.0491 (12) | 0.0104 (10) | 0.0056 (10) | 0.0034 (10) |
C9 | 0.111 (2) | 0.0751 (16) | 0.0603 (16) | −0.0120 (15) | 0.0195 (14) | −0.0075 (13) |
C10 | 0.125 (2) | 0.119 (2) | 0.0504 (15) | −0.0115 (19) | 0.0165 (15) | 0.0051 (16) |
C11 | 0.0669 (16) | 0.0886 (19) | 0.0774 (19) | −0.0017 (14) | −0.0021 (13) | 0.0278 (16) |
C12 | 0.0940 (19) | 0.0613 (15) | 0.0808 (19) | −0.0026 (13) | 0.0065 (14) | 0.0065 (14) |
C13 | 0.0920 (18) | 0.0637 (15) | 0.0571 (14) | 0.0010 (13) | 0.0125 (13) | −0.0009 (12) |
C14 | 0.108 (2) | 0.143 (3) | 0.114 (2) | −0.014 (2) | 0.0065 (18) | 0.070 (2) |
S1—N1 | 1.7116 (19) | C5—H5 | 0.9300 |
S1—C7 | 1.721 (2) | C6—C7 | 1.394 (3) |
S2—O2 | 1.4175 (16) | C6—H6 | 0.9300 |
S2—O3 | 1.4205 (15) | C8—C13 | 1.364 (3) |
S2—N2 | 1.647 (2) | C8—C9 | 1.368 (3) |
S2—C8 | 1.751 (2) | C9—C10 | 1.380 (3) |
O1—C1 | 1.223 (2) | C9—H9 | 0.9300 |
N1—N2 | 1.364 (2) | C10—C11 | 1.359 (3) |
N1—C1 | 1.370 (2) | C10—H10 | 0.9300 |
N2—H2 | 0.844 (9) | C11—C12 | 1.378 (3) |
C1—C2 | 1.448 (3) | C11—C14 | 1.511 (3) |
C2—C3 | 1.385 (3) | C12—C13 | 1.364 (3) |
C2—C7 | 1.386 (2) | C12—H12 | 0.9300 |
C3—C4 | 1.355 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—H14A | 0.9600 |
C4—C5 | 1.387 (3) | C14—H14B | 0.9600 |
C4—H4 | 0.9300 | C14—H14C | 0.9600 |
C5—C6 | 1.356 (3) | ||
N1—S1—C7 | 89.03 (9) | C5—C6—H6 | 121.3 |
O2—S2—O3 | 120.93 (11) | C7—C6—H6 | 121.3 |
O2—S2—N2 | 109.30 (10) | C2—C7—C6 | 120.65 (19) |
O3—S2—N2 | 103.69 (10) | C2—C7—S1 | 112.83 (15) |
O2—S2—C8 | 107.99 (10) | C6—C7—S1 | 126.50 (17) |
O3—S2—C8 | 109.17 (10) | C13—C8—C9 | 120.0 (2) |
N2—S2—C8 | 104.56 (10) | C13—C8—S2 | 119.47 (17) |
N2—N1—C1 | 123.02 (17) | C9—C8—S2 | 120.50 (18) |
N2—N1—S1 | 119.29 (14) | C8—C9—C10 | 118.6 (2) |
C1—N1—S1 | 117.36 (13) | C8—C9—H9 | 120.7 |
N1—N2—S2 | 119.16 (15) | C10—C9—H9 | 120.7 |
N1—N2—H2 | 120.6 (16) | C11—C10—C9 | 122.7 (2) |
S2—N2—H2 | 114.6 (16) | C11—C10—H10 | 118.7 |
O1—C1—N1 | 122.89 (18) | C9—C10—H10 | 118.7 |
O1—C1—C2 | 129.65 (18) | C10—C11—C12 | 117.1 (2) |
N1—C1—C2 | 107.45 (17) | C10—C11—C14 | 121.4 (3) |
C3—C2—C7 | 120.20 (18) | C12—C11—C14 | 121.5 (3) |
C3—C2—C1 | 126.50 (18) | C13—C12—C11 | 121.5 (2) |
C7—C2—C1 | 113.30 (17) | C13—C12—H12 | 119.3 |
C4—C3—C2 | 119.2 (2) | C11—C12—H12 | 119.3 |
C4—C3—H3 | 120.4 | C12—C13—C8 | 120.2 (2) |
C2—C3—H3 | 120.4 | C12—C13—H13 | 119.9 |
C3—C4—C5 | 120.1 (2) | C8—C13—H13 | 119.9 |
C3—C4—H4 | 119.9 | C11—C14—H14A | 109.5 |
C5—C4—H4 | 119.9 | C11—C14—H14B | 109.5 |
C6—C5—C4 | 122.3 (2) | H14A—C14—H14B | 109.5 |
C6—C5—H5 | 118.8 | C11—C14—H14C | 109.5 |
C4—C5—H5 | 118.8 | H14A—C14—H14C | 109.5 |
C5—C6—C7 | 117.5 (2) | H14B—C14—H14C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.85 (2) | 1.95 (2) | 2.784 (3) | 168 (2) |
C6—H6···O2ii | 0.93 | 2.56 | 3.492 (3) | 175 |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12N2O3S2 |
Mr | 320.38 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 8.051 (3), 7.655 (3), 23.91 (1) |
β (°) | 98.490 (8) |
V (Å3) | 1457.4 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.28 × 0.26 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.892, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17685, 3521, 1888 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.089, 1.01 |
No. of reflections | 3521 |
No. of parameters | 194 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.28 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.848 (17) | 1.948 (17) | 2.784 (3) | 168.3 (15) |
C6—H6···O2ii | 0.93 | 2.56 | 3.492 (3) | 175 |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
Acknowledgements
Financial support from the Italian MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629–638. CAS Google Scholar
Clerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem. 9, 179–264. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337–5340. CSD CrossRef CAS Web of Science Google Scholar
Kolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem. 36, 1081–1086. CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874. Web of Science CSD CrossRef CAS Google Scholar
Sarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc. 129, 8872–8881. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep. 23, 279-319. CrossRef CAS Google Scholar
Steinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem. 632, 2010–2016. Web of Science CSD CrossRef CAS Google Scholar
Vicini, P., Amoretti, L., Tognolini, M., Ballabeni, V. & Barocelli, E. (2000). Bioorg. Med. Chem. 8, 2355–2358. Web of Science CrossRef PubMed CAS Google Scholar
Vicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem. Submitted. Google Scholar
Vicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res. 47, 1218–1221. CAS Google Scholar
Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564. Web of Science CrossRef PubMed CAS Google Scholar
Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135–140. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past decades a substantial number of 1,2-benzisothiazol-3(2H)-one derivatives have been reported to possess a wide range of biological activities including antimicrobial, antiviral, anticancer, anti-inflammatory, cartilage antidegenerative and other pharmacological activities (Clerici et al., 2007; Siegemund et al., 2002). As part of our program aimed at developing novel biologically active 1,2-benzisothiazol-3(2H)-ones, we have synthesized in the last years 2-amino-1,2-benzisothiazol-3(2H)-one derivatives resulted in the discovery of new compounds active as antiplatelet/spasmolitic agents (Vicini et al., 1997; Vicini et al., 2000) and of compounds endowed with very interesting antimicrobial properties (Vicini et al., 2002; Zani et al., 2004). Recently, in our continuing efforts to find novel effective 2-amino-1,2-benzisothiazol-3(2H)-one derivatives, we have synthesized a series of 2-(phenylsulfonyl)amino-1,2-benzisothiazol-3(2H)-ones which exhibit anti-HIV-1 activity against wild type virus and against viral strains carrying clinically relevant mutations (Vicini et al., 2009). Experimental evidences suggest non classical targets for this novel class of anti-HIV-1 agents. In order to study their binding sites at a molecular level we thought it appropriate to obtain X-ray crystallographic data for a prototype.
The molecule of the title compound (Fig. 1) shows no unusual geometric features, with the S1—N1 (1.7116 (19) Å) and S1—C1 (1.721 (2) Å) bond distances corresponding to those observed in similar structures (Cavalca et al., 1970; Ranganathan et al., 2002; Steinfeld & Kersting, 2006; Kim et al., 1996; Xu et al., 2006; Sarma & Mugesh, 2007). The N1—N2 bond distance (1.364 (2) Å) is just significantly shorter than that observed in 4,5-dimethyl-2-(3-nitrobenzenesulfonylamino)isothiazol-3(2H)-one 1,1-dioxide (1.387 (4) Å; Kolberg et al., 1999). The benzoisothiazole rings system is essentially planar (maximum deviation 0.019 (4) Å for atom C4) and forms a dihedral angle of 67.37 (6)° with the plane of the C8–C13 benzene ring. In the crystal structure (Fig. 2), molecules are linked into chains running parallel to the b axis by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1).