organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o425-o426

4-Methyl-N-(3-oxo-2,3-di­hydro-1,2-benziso­thia­zol-2-yl)benzene­sulfonamide

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Viale G. P. Usberti 17/A, Universitá di Parma, I-43100 Parma, Italy, and bDipartimento Farmaceutico, Viale G. P. Usberti 27/A, Universitá di Parma, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 22 January 2009; accepted 26 January 2009; online 31 January 2009)

In the title mol­ecule, C14H12N2O3S2, the benzisothia­zolone ring system is essentially planar and forms a dihedral angle of 67.37 (6)° with the plane of the benzene ring. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds to form chains parallel to the b axis.

Related literature

For the chemical and biological properties of 1,2-benzisothia­zol-3(2H)-one derivatives, see: Clerici et al. (2007[Clerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem. 9, 179-264.]); Siegemund et al. (2002[Siegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep. 23, 279-319.]). For 2-amino-1,2-benzisothia­zol-3(2H)-one derivatives with anti­platelet/spasmolitic effects, see: Vicini et al. (1997[Vicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res. 47, 1218-1221.],2000[Vicini, P., Amoretti, L., Tognolini, M., Ballabeni, V. & Barocelli, E. (2000). Bioorg. Med. Chem. 8, 2355-2358.]). For derivatives with anti­microbial properties, see: Vicini et al. (2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-564.]); Zani et al. (2004[Zani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135-140.]). For the synthesis of the title compound, see: Vicini et al. (2009[Vicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem. Submitted.]). For the crystal structures of related compounds, see: Cavalca et al. (1970[Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629-638.]); Ranganathan et al. (2002[Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861-2874.]); Steinfeld & Kersting (2006[Steinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem. 632, 2010-2016.]); Kim et al. (1996[Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337-5340.]); Xu et al. (2006[Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496-o497.]); Sarma & Mugesh (2007[Sarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc. 129, 8872-8881.]); Kolberg et al. (1999[Kolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem. 36, 1081-1086.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O3S2

  • Mr = 320.38

  • Monoclinic, P 21 /n

  • a = 8.051 (3) Å

  • b = 7.655 (3) Å

  • c = 23.910 (10) Å

  • β = 98.490 (8)°

  • V = 1457.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 (2) K

  • 0.28 × 0.26 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.957

  • 17685 measured reflections

  • 3521 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.089

  • S = 1.01

  • 3521 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.848 (17) 1.948 (17) 2.784 (3) 168.3 (15)
C6—H6⋯O2ii 0.93 2.56 3.492 (3) 175
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Over the past decades a substantial number of 1,2-benzisothiazol-3(2H)-one derivatives have been reported to possess a wide range of biological activities including antimicrobial, antiviral, anticancer, anti-inflammatory, cartilage antidegenerative and other pharmacological activities (Clerici et al., 2007; Siegemund et al., 2002). As part of our program aimed at developing novel biologically active 1,2-benzisothiazol-3(2H)-ones, we have synthesized in the last years 2-amino-1,2-benzisothiazol-3(2H)-one derivatives resulted in the discovery of new compounds active as antiplatelet/spasmolitic agents (Vicini et al., 1997; Vicini et al., 2000) and of compounds endowed with very interesting antimicrobial properties (Vicini et al., 2002; Zani et al., 2004). Recently, in our continuing efforts to find novel effective 2-amino-1,2-benzisothiazol-3(2H)-one derivatives, we have synthesized a series of 2-(phenylsulfonyl)amino-1,2-benzisothiazol-3(2H)-ones which exhibit anti-HIV-1 activity against wild type virus and against viral strains carrying clinically relevant mutations (Vicini et al., 2009). Experimental evidences suggest non classical targets for this novel class of anti-HIV-1 agents. In order to study their binding sites at a molecular level we thought it appropriate to obtain X-ray crystallographic data for a prototype.

The molecule of the title compound (Fig. 1) shows no unusual geometric features, with the S1—N1 (1.7116 (19) Å) and S1—C1 (1.721 (2) Å) bond distances corresponding to those observed in similar structures (Cavalca et al., 1970; Ranganathan et al., 2002; Steinfeld & Kersting, 2006; Kim et al., 1996; Xu et al., 2006; Sarma & Mugesh, 2007). The N1—N2 bond distance (1.364 (2) Å) is just significantly shorter than that observed in 4,5-dimethyl-2-(3-nitrobenzenesulfonylamino)isothiazol-3(2H)-one 1,1-dioxide (1.387 (4) Å; Kolberg et al., 1999). The benzoisothiazole rings system is essentially planar (maximum deviation 0.019 (4) Å for atom C4) and forms a dihedral angle of 67.37 (6)° with the plane of the C8–C13 benzene ring. In the crystal structure (Fig. 2), molecules are linked into chains running parallel to the b axis by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1).

Related literature top

For the chemical and biological properties of 1,2-benzisothiazol-3(2H)-one derivatives, see: Clerici et al. (2007); Siegemund et al. (2002). For 2-amino-1,2-benzisothiazol-3(2H)-one derivatives with antiplatelet/spasmolitic effects, see: Vicini et al. (1997,2000). For derivatives with antimicrobial properties, see: Vicini et al. (2002); Zani et al. (2004). For the synthesis of the title compound, see: Vicini et al. (2009). For the crystal structures of related compounds, see: Cavalca et al. (1970); Ranganathan et al. (2002); Steinfeld & Kersting (2006); Kim et al. (1996); Xu et al. (2006); Sarma & Mugesh (2007); Kolberg et al. (1999).

Experimental top

The title compound was synthesized as described elsewhere (Vicini et al., 2009). Freshly prepared chlorocarbonylsulfenylchloride (18 mmol) in dried CCl4 (40 ml) was added dropwise to a stirred, ice-cooled solution of 2-tosylhydrazine (20 mmol) in pyridine (18 ml). After 2 h the reaction mixture was allowed to cool to room temperature and the crude product was filtered, purified by base-acid (Na2CO3—HCl) exchange and silica-gel column chromatography (eluent CH2Cl2—EtOH 95:5 v/v). Pale yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The H atoms bound to the N2 atom was located in a difference Fourier map and refined isotropically with the N—H distance constrained to 0.87 (1) Å. All other H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately along the b axis. Intemolecular N—H···O and C–H···O hydrogen bonds are shown as dashed lines.
4-Methyl-N-(3-oxo-2,3-dihydro-1,2-benzisothiazol-2-yl)benzenesulfonamide top
Crystal data top
C14H12N2O3S2F(000) = 664
Mr = 320.38Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1208 reflections
a = 8.051 (3) Åθ = 3.1–54.7°
b = 7.655 (3) ŵ = 0.38 mm1
c = 23.91 (1) ÅT = 296 K
β = 98.490 (8)°Prism, pale yellow
V = 1457.4 (10) Å30.28 × 0.26 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube1888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.892, Tmax = 0.957k = 1010
17685 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C14H12N2O3S2V = 1457.4 (10) Å3
Mr = 320.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.051 (3) ŵ = 0.38 mm1
b = 7.655 (3) ÅT = 296 K
c = 23.91 (1) Å0.28 × 0.26 × 0.12 mm
β = 98.490 (8)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1888 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.957Rint = 0.041
17685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
3521 reflectionsΔρmin = 0.28 e Å3
194 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07092 (8)0.54275 (7)0.15129 (2)0.0674 (2)
S20.38794 (7)0.64261 (7)0.12617 (2)0.06196 (18)
O10.25352 (19)0.2912 (2)0.21942 (6)0.0740 (4)
O20.4086 (2)0.48129 (18)0.09686 (6)0.0795 (5)
O30.5189 (2)0.7130 (2)0.15313 (7)0.0826 (5)
N10.1134 (2)0.4976 (2)0.17603 (7)0.0585 (5)
N20.2283 (3)0.6277 (2)0.17766 (8)0.0692 (5)
H20.247 (3)0.670 (3)0.2089 (6)0.085 (8)*
C10.1300 (3)0.3352 (2)0.19864 (8)0.0524 (5)
C20.0211 (2)0.2380 (2)0.19334 (8)0.0469 (5)
C30.0556 (3)0.0671 (3)0.21027 (8)0.0584 (5)
H30.02210.00280.22690.070*
C40.2040 (3)0.0051 (3)0.20233 (10)0.0702 (6)
H40.22680.12110.21220.084*
C50.3219 (3)0.0936 (3)0.17950 (10)0.0796 (7)
H50.42490.04320.17580.096*
C60.2925 (3)0.2611 (3)0.16232 (10)0.0722 (6)
H60.37240.32500.14670.087*
C70.1378 (3)0.3337 (2)0.16900 (8)0.0527 (5)
C80.3251 (2)0.7991 (3)0.08016 (8)0.0544 (5)
C90.3198 (3)0.7587 (3)0.02474 (10)0.0815 (7)
H90.34540.64660.01110.098*
C100.2757 (4)0.8877 (4)0.01057 (10)0.0977 (9)
H100.27290.86060.04830.117*
C110.2362 (3)1.0529 (4)0.00758 (12)0.0789 (7)
C120.2448 (3)1.0894 (3)0.06352 (11)0.0793 (7)
H120.22031.20170.07720.095*
C130.2886 (3)0.9645 (3)0.09934 (10)0.0708 (6)
H130.29350.99220.13690.085*
C140.1871 (4)1.1911 (4)0.03204 (12)0.1226 (12)
H14A0.16611.29930.01200.184*
H14B0.27661.20680.06290.184*
H14C0.08741.15490.04640.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0837 (4)0.0494 (3)0.0742 (4)0.0037 (3)0.0287 (3)0.0081 (3)
S20.0711 (4)0.0537 (3)0.0623 (4)0.0114 (3)0.0140 (3)0.0072 (3)
O10.0561 (9)0.0904 (11)0.0790 (10)0.0106 (8)0.0222 (8)0.0324 (9)
O20.1055 (13)0.0531 (9)0.0784 (11)0.0047 (8)0.0092 (9)0.0016 (8)
O30.0789 (11)0.0863 (11)0.0896 (12)0.0260 (9)0.0360 (9)0.0181 (9)
N10.0668 (12)0.0489 (10)0.0626 (11)0.0159 (9)0.0193 (9)0.0127 (8)
N20.0929 (14)0.0660 (12)0.0483 (11)0.0358 (11)0.0092 (10)0.0007 (10)
C10.0538 (13)0.0556 (13)0.0484 (12)0.0027 (10)0.0099 (10)0.0099 (10)
C20.0457 (12)0.0437 (11)0.0508 (11)0.0001 (9)0.0055 (9)0.0021 (9)
C30.0598 (14)0.0514 (13)0.0610 (13)0.0000 (10)0.0004 (11)0.0053 (10)
C40.0759 (17)0.0548 (13)0.0760 (16)0.0139 (13)0.0013 (13)0.0038 (12)
C50.0670 (16)0.0808 (18)0.0911 (18)0.0205 (14)0.0121 (14)0.0180 (14)
C60.0622 (15)0.0765 (16)0.0834 (16)0.0070 (13)0.0287 (13)0.0146 (14)
C70.0552 (13)0.0498 (12)0.0543 (12)0.0030 (10)0.0122 (10)0.0045 (9)
C80.0579 (13)0.0556 (12)0.0491 (12)0.0104 (10)0.0056 (10)0.0034 (10)
C90.111 (2)0.0751 (16)0.0603 (16)0.0120 (15)0.0195 (14)0.0075 (13)
C100.125 (2)0.119 (2)0.0504 (15)0.0115 (19)0.0165 (15)0.0051 (16)
C110.0669 (16)0.0886 (19)0.0774 (19)0.0017 (14)0.0021 (13)0.0278 (16)
C120.0940 (19)0.0613 (15)0.0808 (19)0.0026 (13)0.0065 (14)0.0065 (14)
C130.0920 (18)0.0637 (15)0.0571 (14)0.0010 (13)0.0125 (13)0.0009 (12)
C140.108 (2)0.143 (3)0.114 (2)0.014 (2)0.0065 (18)0.070 (2)
Geometric parameters (Å, º) top
S1—N11.7116 (19)C5—H50.9300
S1—C71.721 (2)C6—C71.394 (3)
S2—O21.4175 (16)C6—H60.9300
S2—O31.4205 (15)C8—C131.364 (3)
S2—N21.647 (2)C8—C91.368 (3)
S2—C81.751 (2)C9—C101.380 (3)
O1—C11.223 (2)C9—H90.9300
N1—N21.364 (2)C10—C111.359 (3)
N1—C11.370 (2)C10—H100.9300
N2—H20.844 (9)C11—C121.378 (3)
C1—C21.448 (3)C11—C141.511 (3)
C2—C31.385 (3)C12—C131.364 (3)
C2—C71.386 (2)C12—H120.9300
C3—C41.355 (3)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.387 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.356 (3)
N1—S1—C789.03 (9)C5—C6—H6121.3
O2—S2—O3120.93 (11)C7—C6—H6121.3
O2—S2—N2109.30 (10)C2—C7—C6120.65 (19)
O3—S2—N2103.69 (10)C2—C7—S1112.83 (15)
O2—S2—C8107.99 (10)C6—C7—S1126.50 (17)
O3—S2—C8109.17 (10)C13—C8—C9120.0 (2)
N2—S2—C8104.56 (10)C13—C8—S2119.47 (17)
N2—N1—C1123.02 (17)C9—C8—S2120.50 (18)
N2—N1—S1119.29 (14)C8—C9—C10118.6 (2)
C1—N1—S1117.36 (13)C8—C9—H9120.7
N1—N2—S2119.16 (15)C10—C9—H9120.7
N1—N2—H2120.6 (16)C11—C10—C9122.7 (2)
S2—N2—H2114.6 (16)C11—C10—H10118.7
O1—C1—N1122.89 (18)C9—C10—H10118.7
O1—C1—C2129.65 (18)C10—C11—C12117.1 (2)
N1—C1—C2107.45 (17)C10—C11—C14121.4 (3)
C3—C2—C7120.20 (18)C12—C11—C14121.5 (3)
C3—C2—C1126.50 (18)C13—C12—C11121.5 (2)
C7—C2—C1113.30 (17)C13—C12—H12119.3
C4—C3—C2119.2 (2)C11—C12—H12119.3
C4—C3—H3120.4C12—C13—C8120.2 (2)
C2—C3—H3120.4C12—C13—H13119.9
C3—C4—C5120.1 (2)C8—C13—H13119.9
C3—C4—H4119.9C11—C14—H14A109.5
C5—C4—H4119.9C11—C14—H14B109.5
C6—C5—C4122.3 (2)H14A—C14—H14B109.5
C6—C5—H5118.8C11—C14—H14C109.5
C4—C5—H5118.8H14A—C14—H14C109.5
C5—C6—C7117.5 (2)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (2)1.95 (2)2.784 (3)168 (2)
C6—H6···O2ii0.932.563.492 (3)175
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O3S2
Mr320.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.051 (3), 7.655 (3), 23.91 (1)
β (°) 98.490 (8)
V3)1457.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.28 × 0.26 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.892, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
17685, 3521, 1888
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 1.01
No. of reflections3521
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.848 (17)1.948 (17)2.784 (3)168.3 (15)
C6—H6···O2ii0.932.563.492 (3)175
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

Financial support from the Italian MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629–638.  CAS Google Scholar
First citationClerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem. 9, 179–264.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationKim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337–5340.  CSD CrossRef CAS Web of Science Google Scholar
First citationKolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem. 36, 1081–1086.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRanganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc. 129, 8872–8881.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep. 23, 279-319.  CrossRef CAS Google Scholar
First citationSteinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem. 632, 2010–2016.  Web of Science CSD CrossRef CAS Google Scholar
First citationVicini, P., Amoretti, L., Tognolini, M., Ballabeni, V. & Barocelli, E. (2000). Bioorg. Med. Chem. 8, 2355–2358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem. Submitted.  Google Scholar
First citationVicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res. 47, 1218–1221.  CAS Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem. 39, 135–140.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o425-o426
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds