metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m221-m222

cis-[Aqua/methanol(0.45/1.55)](1,1,1-tri­fluoro-5,5-di­methyl­hexane-2,4-dionato)nickel(II)–cis-[aqua/methanol(1.49/0.51)](1,1,1-tri­fluoro-5,5-di­methyl­hexane-2,4-dionato)nickel(II) (1/1)

aYoungstown State University, Department of Chemistry, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: bdleskiw@ysu.edu

(Received 26 November 2008; accepted 14 January 2009; online 23 January 2009)

The title compound, [Ni(C8H10F3O2)2(CH4O)1.55(H2O)0.45][Ni(C8H10F3O2)2(CH4O)0.51(H2O)1.49], is an octa­hedral nickel(II) complex with two acetyl­acetonate-like 1,1,1-trifluoro-5,5-dimethyl­hexane-2,4-dionate ligands. The two chelating ligands are in cis positions with respect to each other and the remaining two adjacent coordination sites are taken up by water and methanol donor mol­ecules. In both crystallographically independent mol­ecules, each donor site shows disorder of methanol and water with occupancies of 0.51 (1) and 0.55 (1) in favor of methanol. The remaining two donor sites are not disordered and are water for the first and methanol for the second independent mol­ecule. Rotational disorder is observed for one of the tert-butyl groups, the occupancy rate for the major component here is 0.687 (9). O—H⋯O hydrogen bonds connect the two independent mol­ecules with each other and, across a crystallographic inversion center, they are combined with two neighboring mol­ecules to form a centrosymmetric hydrogen-bonded tetra­mer.

Related literature

For information regarding the synthesis of various metal β-diketonates refer to Watson & Lin (1966[Watson, W. H. & Lin, C. (1966). Inorg. Chem. 5, 1074-1077.]). For mass spectrometry-related articles, see: Lerach & Leskiw (2008[Lerach, O. J. & Leskiw, B. D. (2008). Rapid Commun. Mass Spectrom. 22, 4139-4146.]); Schildcrout (1976[Schildcrout, S. M. (1976). J. Phys. Chem. 80, 2834-2838.]). For a variety of applications and properties of metal β-diketonate complexes, see: Burtoloso (2005[Burtoloso, A. (2005). Synlett, 18, 2859-2860.]); Katok et al. (2006[Katok, K. V., Tertykh, V. A., Brichka, S. Y. & Prikhod, G. P. (2006). J. Therm. Anal. Calorim. 86, 109-114.]); Condorelli et al. (2007[Condorelli, G. G., Motta, A., Bedoya, C., Di Mauro, G. P. & Smecca, E. (2007). Inorg. Chim. Acta, 360, 170-178.]). Lerach et al. (2007[Lerach, J. O., Zeller, M. & Leskiw, B. D. (2007). Acta Cryst. E63, m2639.]) and Hunter et al. (2009[Hunter, G. O., Zeller, M. & Leskiw, B. D. (2009). Acta Cryst. E65, m24.]) report the structures of Co- and Zn-complexes with the same ligand.

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H10F3O2)2(CH4O)1.55(H2O)0.45][Ni(C8H10F3O2)2(CH4O)0.51(H2O)1.49]

  • Mr = 998.89

  • Triclinic, [P \overline 1]

  • a = 11.327 (2) Å

  • b = 14.701 (3) Å

  • c = 15.432 (3) Å

  • α = 101.379 (3)°

  • β = 104.946 (3)°

  • γ = 107.678 (3)°

  • V = 2257.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.570, Tmax = 0.869

  • 22225 measured reflections

  • 10979 independent reflections

  • 5010 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.155

  • S = 1.00

  • 10979 reflections

  • 619 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O9i 0.82 (4) 1.87 (2) 2.692 (4) 175 (5)
O6—H6D⋯O7 0.84 (4) 1.89 (2) 2.701 (4) 164 (5)
O6—H6E⋯O12i 0.81 (4) 2.16 (2) 2.951 (5) 164 (5)
O11—H11A⋯O1 0.85 (5) 1.93 (5) 2.764 (4) 166 (5)
O12—H12A⋯O3 0.84 (2) 1.94 (2) 2.778 (4) 173 (5)
O12—H12B⋯O10 0.84 (2) 2.5 (1) 2.861 (4) 108 (11)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The research of metal β-diketonate compounds can be traced back to the early to mid 1950's. Since then extensive research has been conducted in order to gain a better understanding of these compounds for a wide variety of scientific applications. Some of the more recent applications are catalysis (Burtoloso, 2005), carbon-nanotube structures (Katok et al., 2006), and the deposition of metallic or ceramic then films (Condorelli et al., 2007). Our own research group is most interested in investigating gas-phase rearrangements of selected metal β-diketonate complexes via mass spectrometry. Our overall goal is to examine stability through fragmentation and to better understand ligand exchange reactions in the gas phase. Several acetylacetonate and substituted acetylacetonate species were already observed to undergo various ligand exchange reactions and association reactions (Schildcrout, 1976; Lerach & Leskiw, 2008). To completely characterize the complexes prior to their use in mass spectrometry, several solid state structures of such complexes have been determined including those of the Co-, Zn and Ni-complexes with the ligand 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate. The Ni complex is the title complex of this report, the structures of the Co- and Zn complexes were reported recently (Lerach et al., 2007; Hunter et al., 2009).

The title compound, the Ni derivative of this series, has the general formula [Ni(O2C8F3)2L2] (L = H2O, HOCH3). It is an octahedral nickel(II) complex with two acetyl acetonate like 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate ligands. The two chelating ligands are in cis position to each other and the remaining two adjacent coordination sites are taken up by water and methanol donor molecules (Figure 1). In both crystallographically independent molecules each one donor site shows disorder of methanol and water with occupancies of 0.51 (1) and 0.55 (1) in favor of methanol. The remaining two donor sites are not disordered and are water for the first and methanol for the second independent molecule. Rotational disorder is observed for one of the tert-butyl groups, the occupancy rate for the major component here is 0.687 (9).

Hydrogen bonds connect the two independent molecules with each other. Across a crystallographic inversion center, they are combined with two neighboring molecules to form a centrosymmetric hydrogen bonded [Ni(O2C8F3)2L2] tetramer (Figure 2).

Related literature top

For information regarding the synthesis of various metal β-diketonates refer to Watson & Lin (1966). For mass spectrometry-related articles, see: Lerach & Leskiw (2008); Schildcrout (1976). For a variety of applications and properties of metal β-diketonate complexes, see: Burtoloso (2005); Katok et al. (2006); Condorelli et al. (2007). Lerach et al. (2007) and Hunter et al. (2009) report the structures of Co- and Zn-complexes with the same ligand.

Experimental top

The synthesis of the title compound was adapted from Watson & Lin (1966). 0.40 ml (2.5 mmol) of the ligand were added to a stirring solution of 0.25 g NiCl2 (1.97 mmol) and 50 ml of de-ionized water. Diluted 1:1 (v/v) NH4OH was added dropwise to the mixture until no more visible precipitate formed. The mixture was stirred overnight at room temperature, and the precipitate was isolated via vacuum filtration resulting in a pale blue powder. The powder was dried at room temperature overnight resulting in a blue-green product which was re-crystallized overnight by vapor diffusion of hexanes into a solution in diethyl ether.

Refinement top

Disorder is observed for one hydroxyl group and two of the methanol ligands are only partially present with the remainder taken up by water molecules. The occupancy ratio for the two tert-butyl moieties is 0.687 (9) to 0.313 (9). The rate of presence for the methanol molecules is 0.51 (1) and 0.55 (1), respectively.

OH hydrogen atoms were located in difference density Fourier maps and were refined with an O—H distance restraint of 0.84 (2) Å. H···H distances within disordered water molecules were restrained to 1.35 Å. All other H atoms were placed in calculated positions with C—H distances of 0.98 (methyl) and 0.95 Å (CH). The methyl and hydroxyl H's were refined with an isotropic displacement parameter Uiso of 1.5 times Ueq of the adjacent carbon or oxygen atom, and the C—H hydrogen atom with Uiso = 1.2 Ueq(C). Methyl hydrogen atoms were allowed to rotate to best fit the experimental electron density.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid respresentation of the two crystallograpically independent molecules. The probability level for the anisotropic displacement parameters is at 50%. Minor moieties of disordered sections are omitted for clarity.
[Figure 2] Fig. 2. Packing view of the title compound along the [100]. Hydrogen bonds are indicated as dashed lines. Minor moieties of disordered moieties and hydrogen atoms are omitted for clarity.
cis-[Aqua/methanol(0.45/1.55)](1,1,1-trifluoro-5,5-dimethylhexane- 2,4-dionato)nickel(II)–cis-[aqua/methanol(1.49/0.51)](1,1,1-trifluoro- 5,5-dimethylhexane-2,4-dionato)nickel(II) (1/1) top
Crystal data top
[Ni(C8H10F3O2)2(CH4O)1.55(H2O)0.45] [Ni(C8H10F3O2)2(CH4O)0.51(H2O)1.49]Z = 2
Mr = 998.89F(000) = 1032.9
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.327 (2) ÅCell parameters from 3507 reflections
b = 14.701 (3) Åθ = 2.3–28.8°
c = 15.432 (3) ŵ = 0.94 mm1
α = 101.379 (3)°T = 100 K
β = 104.946 (3)°Block, green
γ = 107.678 (3)°0.20 × 0.20 × 0.15 mm
V = 2257.0 (8) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
10979 independent reflections
Radiation source: fine-focus sealed tube5010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
h = 1515
Tmin = 0.570, Tmax = 0.869k = 1919
22225 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
10979 reflections(Δ/σ)max = 0.003
619 parametersΔρmax = 0.69 e Å3
9 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni(C8H10F3O2)2(CH4O)1.55(H2O)0.45] [Ni(C8H10F3O2)2(CH4O)0.51(H2O)1.49]γ = 107.678 (3)°
Mr = 998.89V = 2257.0 (8) Å3
Triclinic, P1Z = 2
a = 11.327 (2) ÅMo Kα radiation
b = 14.701 (3) ŵ = 0.94 mm1
c = 15.432 (3) ÅT = 100 K
α = 101.379 (3)°0.20 × 0.20 × 0.15 mm
β = 104.946 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10979 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
5010 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.869Rint = 0.075
22225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0579 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.69 e Å3
10979 reflectionsΔρmin = 0.60 e Å3
619 parameters
Special details top

Experimental. Disorder is observed for one hydroxyl group and two of the methanol ligands are only partially present with the remainder taken up by water molecules. The occupancy ratio for the two tert-butyl moieties is 0.687 (9) to 0.313 (9). The rate of presence for the methanol molecules is 0.51 (1) and 0.55 (1), respectively.

OH hydrogen atoms were located in difference denisty Fourier maps and were refined with an O—H distance restraint of 0.84 (2) Å. The second hydrogen atoms in disordered water molecules were restrained to have a distance of 1.35 (2) Å from the position of the first H atom. All other H atoms were placed in calculated positions with C—H distances of 0.98 (methyl) and 0.95 Å (CH). The methyl and hydroxyl H's were refined with an isotropic displacement parameter Uiso of 1.5 times Ueq of the adjacent carbon or oxygen atom, and the C—H hydrogen atom with Uiso = 1.2 Ueq(C). Methyl hydrogen atoms were allowed to rotate to best fit the experimental electron density.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2154 (5)0.0370 (4)0.2924 (4)0.0382 (13)
C20.2772 (4)0.1381 (3)0.2784 (3)0.0271 (11)
C30.3419 (4)0.1443 (3)0.2152 (3)0.0262 (11)
H30.34230.08360.18000.031*
C40.4089 (4)0.2337 (4)0.1973 (3)0.0227 (10)
C50.4801 (4)0.2298 (3)0.1255 (3)0.0275 (11)
C60.5271 (5)0.1424 (4)0.1132 (4)0.0398 (13)
H6A0.58620.14630.17380.060*
H6B0.57420.14580.06810.060*
H6C0.45090.07900.08960.060*
C70.6002 (5)0.3285 (4)0.1560 (4)0.0366 (13)
H7A0.57070.38490.16060.055*
H7B0.64480.32710.10950.055*
H7C0.66140.33620.21740.055*
C80.3812 (5)0.2206 (4)0.0314 (3)0.0324 (12)
H8A0.30350.15890.01270.049*
H8B0.42270.21870.01690.049*
H8C0.35430.27830.03870.049*
C90.0415 (5)0.3477 (5)0.3914 (4)0.0423 (14)
C100.0368 (5)0.3223 (4)0.3293 (3)0.0282 (11)
C110.0341 (4)0.2624 (4)0.2390 (3)0.0319 (12)
H110.12730.23450.22190.038*
C120.0219 (4)0.2388 (3)0.1682 (3)0.0255 (11)
C130.0694 (5)0.1722 (4)0.0695 (3)0.0321 (12)
C140.0128 (5)0.1427 (4)0.0125 (3)0.0442 (14)
H14A0.07720.20320.00990.066*
H14B0.04530.10140.05140.066*
H14C0.05910.10460.04260.066*
C150.1688 (5)0.0761 (4)0.0745 (4)0.0431 (14)
H15A0.22500.03320.01070.065*
H15B0.22370.09420.10930.065*
H15C0.12090.04020.10670.065*
C160.1424 (5)0.2326 (4)0.0233 (3)0.0419 (14)
H16A0.07810.29430.02260.063*
H16B0.19660.24950.05930.063*
H16C0.19890.19260.04130.063*
C170.2152 (9)0.5096 (8)0.2473 (7)0.033 (3)0.508 (12)
H17A0.17030.47090.18080.050*0.508 (12)
H17B0.25220.58090.25300.050*0.508 (12)
H17C0.15210.49860.28090.050*0.508 (12)
C180.6284 (5)0.2615 (4)0.5218 (3)0.0374 (13)
C190.5238 (5)0.2489 (4)0.5689 (3)0.0295 (11)
C200.5083 (5)0.1814 (4)0.6188 (3)0.0332 (12)
H200.56860.14810.62590.040*
C210.4099 (5)0.1568 (4)0.6610 (3)0.0343 (12)
C220.4030 (6)0.0779 (4)0.7129 (4)0.0468 (15)
C230.3917 (8)0.0193 (4)0.6472 (4)0.073 (2)
H23A0.31140.04350.59220.110*
H23B0.38800.06980.68050.110*
H23C0.46860.00690.62670.110*
C240.5299 (6)0.1188 (4)0.7993 (4)0.0576 (17)
H24A0.60680.13400.77870.086*
H24B0.52970.06850.83260.086*
H24C0.53410.17980.84150.086*
C250.2841 (7)0.0601 (5)0.7459 (4)0.0661 (19)
H25A0.29270.12290.78810.099*
H25B0.28000.00980.77950.099*
H25C0.20330.03630.69140.099*
C260.5696 (5)0.4356 (4)0.8933 (3)0.0320 (12)
C270.4424 (4)0.4033 (3)0.8111 (3)0.0251 (11)
C280.3258 (4)0.3757 (3)0.8271 (3)0.0291 (11)
H280.32730.37680.88910.035*
C290.2011 (5)0.3452 (4)0.7550 (3)0.0302 (11)
C300.0798 (5)0.3395 (4)0.7834 (3)0.0377 (13)
C310.0429 (8)0.2896 (9)0.6985 (6)0.054 (3)0.687 (9)
H31A0.12010.28430.71770.081*0.687 (9)
H31B0.04870.22250.66790.081*0.687 (9)
H31C0.03990.32930.65450.081*0.687 (9)
C320.0967 (8)0.4400 (7)0.8317 (7)0.053 (3)0.687 (9)
H32A0.11050.48260.79090.080*0.687 (9)
H32B0.17340.46680.88960.080*0.687 (9)
H32C0.01780.43860.84730.080*0.687 (9)
C330.0716 (8)0.2709 (7)0.8505 (6)0.048 (3)0.687 (9)
H33A0.14590.30470.90980.073*0.687 (9)
H33B0.07530.20710.82010.073*0.687 (9)
H33C0.01130.25840.86330.073*0.687 (9)
C31B0.0110 (18)0.4102 (13)0.7309 (13)0.052 (6)0.313 (9)
H31D0.02890.37690.66310.078*0.313 (9)
H31E0.07900.47570.74290.078*0.313 (9)
H31F0.05690.41910.75640.078*0.313 (9)
C32B0.1036 (17)0.3959 (16)0.8881 (12)0.050 (6)0.313 (9)
H32D0.01890.39150.89560.076*0.313 (9)
H32E0.16000.46640.90330.076*0.313 (9)
H32F0.14670.36500.93050.076*0.313 (9)
C33B0.017 (2)0.2381 (15)0.746 (2)0.091 (12)0.313 (9)
H33D0.02480.19200.76360.136*0.313 (9)
H33E0.05240.22040.67710.136*0.313 (9)
H33F0.08880.23330.77120.136*0.313 (9)
C340.0684 (6)0.1373 (5)0.4794 (4)0.069 (2)
H34A0.09560.08160.48850.104*
H34B0.00120.11640.41720.104*
H34C0.03200.15690.52790.104*
C350.2792 (10)0.5035 (7)0.6105 (7)0.038 (3)0.546 (15)
H35A0.19210.47250.61490.057*0.546 (15)
H35B0.27850.55540.57940.057*0.546 (15)
H35C0.34530.53350.67380.057*0.546 (15)
F10.2653 (4)0.0395 (2)0.3817 (2)0.0601 (10)
F20.2309 (3)0.0384 (2)0.2390 (2)0.0493 (8)
F30.0859 (3)0.0125 (2)0.2729 (2)0.0579 (9)
F40.0066 (3)0.3460 (3)0.4771 (2)0.0767 (13)
F50.1676 (3)0.2897 (3)0.3588 (2)0.0867 (14)
F60.0380 (5)0.4389 (4)0.3985 (3)0.1089 (18)
F70.7002 (3)0.2064 (2)0.5379 (2)0.0514 (9)
F80.7119 (3)0.3569 (2)0.5511 (2)0.0502 (8)
F90.5724 (3)0.2372 (2)0.42870 (19)0.0478 (8)
F100.6442 (3)0.3849 (2)0.8754 (2)0.0463 (8)
F110.5512 (3)0.4239 (2)0.97410 (18)0.0427 (8)
F120.6426 (3)0.53284 (19)0.91291 (18)0.0367 (7)
Ni10.28898 (6)0.34142 (4)0.30511 (4)0.02390 (16)
Ni20.32213 (6)0.31408 (5)0.61117 (4)0.02661 (17)
O10.2590 (3)0.2076 (2)0.3312 (2)0.0269 (7)
O20.4093 (3)0.3171 (2)0.2352 (2)0.0236 (7)
O30.1611 (3)0.3641 (2)0.3708 (2)0.0265 (7)
O40.1419 (3)0.2711 (2)0.1825 (2)0.0271 (8)
O50.3153 (3)0.4793 (2)0.2856 (2)0.0305 (8)
H5A0.382 (3)0.511 (3)0.277 (3)0.046*
H5B0.311 (7)0.509 (5)0.336 (4)0.046*0.492 (12)
O60.4469 (3)0.4085 (2)0.4268 (2)0.0300 (8)
H6D0.455 (5)0.369 (3)0.458 (3)0.045*
H6E0.518 (3)0.442 (3)0.426 (4)0.045*
O70.4599 (3)0.3051 (2)0.5532 (2)0.0271 (7)
O80.3270 (3)0.1969 (2)0.6578 (2)0.0325 (8)
O90.4634 (3)0.4058 (2)0.7340 (2)0.0274 (7)
O100.1850 (3)0.3252 (3)0.6687 (2)0.0335 (8)
O110.1784 (3)0.2192 (3)0.4861 (2)0.0349 (9)
H11A0.205 (5)0.206 (4)0.440 (3)0.052*
O120.3086 (3)0.4347 (3)0.5613 (2)0.0301 (8)
H12A0.260 (4)0.416 (4)0.5048 (16)0.045*
H12B0.266 (8)0.454 (10)0.593 (4)0.045*0.454 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.029 (3)0.039 (3)0.008 (3)0.021 (3)0.007 (3)
C20.026 (3)0.025 (3)0.021 (3)0.002 (2)0.004 (2)0.003 (2)
C30.026 (3)0.023 (3)0.026 (3)0.008 (2)0.007 (2)0.005 (2)
C40.018 (2)0.031 (3)0.017 (2)0.008 (2)0.0034 (18)0.008 (2)
C50.026 (3)0.026 (3)0.028 (3)0.007 (2)0.009 (2)0.006 (2)
C60.039 (3)0.041 (3)0.053 (4)0.020 (3)0.026 (3)0.021 (3)
C70.031 (3)0.036 (3)0.042 (3)0.010 (2)0.015 (2)0.014 (3)
C80.037 (3)0.042 (3)0.023 (3)0.017 (2)0.012 (2)0.014 (2)
C90.036 (3)0.065 (4)0.025 (3)0.024 (3)0.010 (2)0.005 (3)
C100.030 (3)0.032 (3)0.021 (3)0.010 (2)0.009 (2)0.006 (2)
C110.016 (2)0.046 (3)0.022 (3)0.005 (2)0.002 (2)0.001 (2)
C120.023 (3)0.027 (3)0.025 (3)0.008 (2)0.007 (2)0.009 (2)
C130.024 (3)0.037 (3)0.026 (3)0.008 (2)0.005 (2)0.002 (2)
C140.034 (3)0.055 (4)0.026 (3)0.010 (3)0.005 (2)0.009 (3)
C150.033 (3)0.036 (3)0.040 (3)0.000 (2)0.007 (2)0.006 (3)
C160.034 (3)0.059 (4)0.024 (3)0.014 (3)0.004 (2)0.007 (3)
C170.034 (6)0.043 (7)0.040 (6)0.024 (5)0.022 (5)0.020 (5)
C180.037 (3)0.045 (4)0.024 (3)0.017 (3)0.006 (2)0.001 (3)
C190.028 (3)0.030 (3)0.018 (2)0.008 (2)0.001 (2)0.003 (2)
C200.039 (3)0.028 (3)0.027 (3)0.015 (2)0.003 (2)0.005 (2)
C210.042 (3)0.026 (3)0.023 (3)0.007 (3)0.000 (2)0.005 (2)
C220.069 (4)0.031 (3)0.036 (3)0.014 (3)0.012 (3)0.015 (3)
C230.128 (7)0.036 (4)0.052 (4)0.027 (4)0.026 (4)0.017 (3)
C240.081 (5)0.052 (4)0.042 (4)0.031 (4)0.012 (3)0.022 (3)
C250.086 (5)0.054 (4)0.060 (4)0.011 (4)0.029 (4)0.039 (4)
C260.034 (3)0.031 (3)0.025 (3)0.010 (2)0.005 (2)0.008 (2)
C270.026 (3)0.024 (3)0.023 (3)0.008 (2)0.005 (2)0.008 (2)
C280.032 (3)0.033 (3)0.017 (2)0.006 (2)0.006 (2)0.008 (2)
C290.026 (3)0.033 (3)0.027 (3)0.004 (2)0.008 (2)0.010 (2)
C300.029 (3)0.049 (4)0.023 (3)0.003 (3)0.007 (2)0.007 (3)
C310.024 (4)0.098 (9)0.035 (5)0.020 (5)0.008 (4)0.018 (5)
C320.036 (5)0.064 (7)0.059 (7)0.021 (5)0.020 (5)0.006 (5)
C330.039 (5)0.070 (7)0.040 (5)0.011 (5)0.021 (4)0.028 (5)
C31B0.047 (12)0.037 (12)0.056 (13)0.001 (9)0.023 (10)0.002 (10)
C32B0.031 (10)0.080 (17)0.028 (10)0.008 (10)0.016 (8)0.001 (10)
C33B0.060 (17)0.029 (12)0.18 (4)0.006 (11)0.08 (2)0.017 (16)
C340.055 (4)0.075 (5)0.042 (4)0.010 (4)0.016 (3)0.003 (3)
C350.035 (6)0.038 (7)0.034 (6)0.013 (5)0.008 (4)0.003 (5)
F10.100 (3)0.0395 (19)0.0349 (19)0.0108 (19)0.0235 (18)0.0205 (16)
F20.068 (2)0.0258 (17)0.062 (2)0.0143 (16)0.0375 (18)0.0131 (16)
F30.045 (2)0.0343 (19)0.090 (3)0.0014 (15)0.0344 (19)0.0168 (18)
F40.056 (2)0.168 (4)0.0325 (19)0.060 (3)0.0294 (17)0.038 (2)
F50.030 (2)0.154 (4)0.049 (2)0.023 (2)0.0169 (17)0.012 (2)
F60.194 (5)0.098 (4)0.119 (4)0.104 (4)0.117 (4)0.048 (3)
F70.0467 (19)0.066 (2)0.053 (2)0.0380 (18)0.0171 (16)0.0152 (18)
F80.0364 (18)0.046 (2)0.061 (2)0.0073 (16)0.0215 (16)0.0067 (17)
F90.0466 (19)0.074 (2)0.0277 (17)0.0309 (17)0.0138 (14)0.0108 (16)
F100.0430 (19)0.051 (2)0.0408 (18)0.0281 (16)0.0013 (14)0.0044 (16)
F110.0382 (17)0.054 (2)0.0238 (15)0.0046 (15)0.0023 (13)0.0165 (15)
F120.0326 (16)0.0282 (16)0.0317 (16)0.0006 (13)0.0002 (12)0.0048 (13)
Ni10.0211 (3)0.0256 (3)0.0187 (3)0.0038 (3)0.0044 (2)0.0041 (3)
Ni20.0253 (3)0.0307 (4)0.0181 (3)0.0052 (3)0.0053 (3)0.0063 (3)
O10.0255 (18)0.0307 (19)0.0201 (17)0.0065 (15)0.0060 (14)0.0071 (15)
O20.0221 (17)0.0204 (18)0.0272 (18)0.0050 (14)0.0090 (14)0.0088 (15)
O30.0221 (18)0.0328 (19)0.0189 (17)0.0059 (15)0.0051 (14)0.0055 (15)
O40.0200 (18)0.037 (2)0.0209 (17)0.0061 (15)0.0068 (14)0.0082 (15)
O50.029 (2)0.031 (2)0.034 (2)0.0089 (16)0.0150 (16)0.0132 (17)
O60.0271 (19)0.030 (2)0.0263 (19)0.0019 (16)0.0070 (16)0.0115 (16)
O70.0285 (18)0.0284 (19)0.0253 (18)0.0112 (16)0.0095 (14)0.0082 (15)
O80.038 (2)0.030 (2)0.0233 (18)0.0061 (17)0.0089 (15)0.0078 (16)
O90.0213 (17)0.0322 (19)0.0199 (17)0.0005 (14)0.0054 (13)0.0065 (15)
O100.0275 (19)0.049 (2)0.0188 (18)0.0099 (16)0.0060 (14)0.0096 (17)
O110.032 (2)0.037 (2)0.0220 (19)0.0012 (16)0.0106 (15)0.0025 (16)
O120.0267 (19)0.039 (2)0.0202 (18)0.0113 (16)0.0055 (15)0.0049 (17)
Geometric parameters (Å, º) top
C1—F21.332 (6)C24—H24C0.9800
C1—F31.334 (6)C25—H25A0.9800
C1—F11.337 (6)C25—H25B0.9800
C1—C21.522 (6)C25—H25C0.9800
C2—O11.279 (5)C26—F101.330 (6)
C2—C31.364 (6)C26—F121.342 (5)
C3—C41.424 (6)C26—F111.350 (5)
C3—H30.9500C26—C271.522 (6)
C4—O21.247 (5)C27—O91.278 (5)
C4—C51.530 (6)C27—C281.361 (6)
C5—C61.531 (6)C28—C291.429 (6)
C5—C81.540 (6)C28—H280.9500
C5—C71.542 (6)C29—O101.256 (5)
C6—H6A0.9800C29—C301.531 (7)
C6—H6B0.9800C30—C321.447 (10)
C6—H6C0.9800C30—C33B1.45 (2)
C7—H7A0.9800C30—C311.499 (9)
C7—H7B0.9800C30—C32B1.575 (17)
C7—H7C0.9800C30—C331.582 (9)
C8—H8A0.9800C30—C31B1.68 (2)
C8—H8B0.9800C31—H31A0.9800
C8—H8C0.9800C31—H31B0.9800
C9—F41.302 (6)C31—H31C0.9800
C9—F61.310 (7)C32—H32A0.9800
C9—F51.319 (6)C32—H32B0.9800
C9—C101.532 (7)C32—H32C0.9800
C10—O31.274 (5)C33—H33A0.9800
C10—C111.368 (6)C33—H33B0.9800
C11—C121.434 (6)C33—H33C0.9800
C11—H110.9500C31B—H31D0.9800
C12—O41.239 (5)C31B—H31E0.9800
C12—C131.527 (6)C31B—H31F0.9800
C13—C141.531 (6)C32B—H32D0.9800
C13—C161.540 (7)C32B—H32E0.9800
C13—C151.547 (6)C32B—H32F0.9800
C14—H14A0.9800C33B—H33D0.9800
C14—H14B0.9800C33B—H33E0.9800
C14—H14C0.9800C33B—H33F0.9800
C15—H15A0.9800C34—O111.409 (6)
C15—H15B0.9800C34—H34A0.9800
C15—H15C0.9800C34—H34B0.9800
C16—H16A0.9800C34—H34C0.9800
C16—H16B0.9800C35—O121.320 (10)
C16—H16C0.9800C35—H35A0.9800
C17—O51.377 (9)C35—H35B0.9800
C17—H17A0.9800C35—H35C0.9800
C17—H17B0.9800C35—H12B0.67 (13)
C17—H17C0.9800Ni1—O41.995 (3)
C18—F71.326 (6)Ni1—O22.013 (3)
C18—F91.336 (5)Ni1—O12.032 (3)
C18—F81.337 (6)Ni1—O32.039 (3)
C18—C191.526 (7)Ni1—O62.040 (3)
C19—O71.273 (5)Ni1—O52.051 (3)
C19—C201.369 (6)Ni2—O82.004 (3)
C20—C211.421 (7)Ni2—O102.010 (3)
C20—H200.9500Ni2—O72.013 (3)
C21—O81.248 (6)Ni2—O92.022 (3)
C21—C221.528 (7)Ni2—O112.063 (3)
C22—C231.528 (8)Ni2—O122.098 (4)
C22—C251.528 (8)O5—H5A0.82 (4)
C22—C241.542 (8)O5—H5B0.83 (2)
C23—H23A0.9800O6—H6D0.84 (4)
C23—H23B0.9800O6—H6E0.81 (4)
C23—H23C0.9800O11—H11A0.85 (5)
C24—H24A0.9800O12—H12A0.838 (19)
C24—H24B0.9800O12—H12B0.84 (2)
F2—C1—F3106.6 (4)C22—C25—H25C109.5
F2—C1—F1107.1 (4)H25A—C25—H25C109.5
F3—C1—F1106.7 (4)H25B—C25—H25C109.5
F2—C1—C2114.4 (4)F10—C26—F12106.8 (4)
F3—C1—C2110.6 (4)F10—C26—F11106.5 (4)
F1—C1—C2111.0 (4)F12—C26—F11105.9 (4)
O1—C2—C3129.0 (4)F10—C26—C27112.0 (4)
O1—C2—C1111.7 (4)F12—C26—C27111.2 (4)
C3—C2—C1119.3 (4)F11—C26—C27114.0 (4)
C2—C3—C4125.7 (4)O9—C27—C28129.1 (4)
C2—C3—H3117.1O9—C27—C26112.1 (4)
C4—C3—H3117.1C28—C27—C26118.8 (4)
O2—C4—C3123.0 (4)C27—C28—C29123.1 (4)
O2—C4—C5116.8 (4)C27—C28—H28118.5
C3—C4—C5120.1 (4)C29—C28—H28118.5
C4—C5—C6113.8 (4)O10—C29—C28123.9 (4)
C4—C5—C8106.3 (4)O10—C29—C30117.3 (4)
C6—C5—C8109.5 (4)C28—C29—C30118.7 (4)
C4—C5—C7109.1 (4)C32—C30—C33B141.5 (10)
C6—C5—C7108.7 (4)C32—C30—C31112.8 (7)
C8—C5—C7109.2 (4)C32—C30—C29108.1 (5)
C5—C6—H6A109.5C33B—C30—C29110.1 (10)
C5—C6—H6B109.5C31—C30—C29110.1 (5)
H6A—C6—H6B109.5C33B—C30—C32B116.1 (14)
C5—C6—H6C109.5C29—C30—C32B117.6 (7)
H6A—C6—H6C109.5C32—C30—C33111.1 (6)
H6B—C6—H6C109.5C31—C30—C33107.3 (6)
C5—C7—H7A109.5C29—C30—C33107.4 (5)
C5—C7—H7B109.5C33B—C30—C31B106.6 (15)
H7A—C7—H7B109.5C29—C30—C31B106.6 (7)
C5—C7—H7C109.5C30—C31—H31A109.5
H7A—C7—H7C109.5C30—C31—H31B109.5
H7B—C7—H7C109.5C30—C31—H31C109.5
C5—C8—H8A109.5C30—C32—H32A109.5
C5—C8—H8B109.5C30—C32—H32B109.5
H8A—C8—H8B109.5C30—C32—H32C109.5
C5—C8—H8C109.5C30—C33—H33A109.5
H8A—C8—H8C109.5C30—C33—H33B109.5
H8B—C8—H8C109.5C30—C33—H33C109.5
F4—C9—F6105.9 (5)C30—C31B—H31D109.5
F4—C9—F5107.4 (5)C30—C31B—H31E109.5
F6—C9—F5105.7 (5)H31D—C31B—H31E109.5
F4—C9—C10113.0 (4)C30—C31B—H31F109.5
F6—C9—C10109.8 (5)H31D—C31B—H31F109.5
F5—C9—C10114.4 (4)H31E—C31B—H31F109.5
O3—C10—C11130.0 (4)C30—C32B—H32D109.5
O3—C10—C9113.0 (4)C30—C32B—H32E109.5
C11—C10—C9116.9 (4)H32D—C32B—H32E109.5
C10—C11—C12124.7 (4)C30—C32B—H32F109.5
C10—C11—H11117.6H32D—C32B—H32F109.5
C12—C11—H11117.6H32E—C32B—H32F109.5
O4—C12—C11123.3 (4)C30—C33B—H33D109.5
O4—C12—C13117.5 (4)C30—C33B—H33E109.5
C11—C12—C13119.2 (4)H33D—C33B—H33E109.5
C12—C13—C14109.3 (4)C30—C33B—H33F109.5
C12—C13—C16107.8 (4)H33D—C33B—H33F109.5
C14—C13—C16110.1 (4)H33E—C33B—H33F109.5
C12—C13—C15110.3 (4)O11—C34—H34A109.5
C14—C13—C15108.8 (4)O11—C34—H34B109.5
C16—C13—C15110.4 (4)H34A—C34—H34B109.5
C13—C14—H14A109.5O11—C34—H34C109.5
C13—C14—H14B109.5H34A—C34—H34C109.5
H14A—C14—H14B109.5H34B—C34—H34C109.5
C13—C14—H14C109.5O12—C35—H35A109.5
H14A—C14—H14C109.5O12—C35—H35B109.5
H14B—C14—H14C109.5O12—C35—H35C109.5
C13—C15—H15A109.5O4—Ni1—O286.61 (12)
C13—C15—H15B109.5O4—Ni1—O188.71 (13)
H15A—C15—H15B109.5O2—Ni1—O190.57 (12)
C13—C15—H15C109.5O4—Ni1—O391.10 (12)
H15A—C15—H15C109.5O2—Ni1—O3177.68 (12)
H15B—C15—H15C109.5O1—Ni1—O389.75 (12)
C13—C16—H16A109.5O4—Ni1—O6176.00 (14)
C13—C16—H16B109.5O2—Ni1—O689.65 (13)
H16A—C16—H16B109.5O1—Ni1—O689.89 (13)
C13—C16—H16C109.5O3—Ni1—O692.65 (13)
H16A—C16—H16C109.5O4—Ni1—O592.70 (13)
H16B—C16—H16C109.5O2—Ni1—O592.81 (12)
O5—C17—H17A109.5O1—Ni1—O5176.41 (13)
O5—C17—H17B109.5O3—Ni1—O586.92 (12)
O5—C17—H17C109.5O6—Ni1—O588.91 (13)
H17A—C17—H5B140.5O8—Ni2—O1089.86 (14)
H17B—C17—H5B99.1O8—Ni2—O791.07 (13)
H17C—C17—H5B84.8O10—Ni2—O7179.05 (14)
F7—C18—F9107.1 (4)O8—Ni2—O988.98 (13)
F7—C18—F8107.1 (4)O10—Ni2—O989.01 (13)
F9—C18—F8107.1 (4)O7—Ni2—O990.81 (13)
F7—C18—C19114.2 (4)O8—Ni2—O1190.45 (13)
F9—C18—C19110.4 (4)O10—Ni2—O1191.16 (13)
F8—C18—C19110.6 (4)O7—Ni2—O1189.03 (13)
O7—C19—C20128.9 (5)O9—Ni2—O11179.40 (14)
O7—C19—C18111.7 (4)O8—Ni2—O12177.62 (13)
C20—C19—C18119.4 (5)O10—Ni2—O1288.24 (13)
C19—C20—C21125.7 (5)O7—Ni2—O1290.84 (13)
C19—C20—H20117.2O9—Ni2—O1292.41 (13)
C21—C20—H20117.2O11—Ni2—O1288.17 (13)
O8—C21—C20122.8 (4)C2—O1—Ni1120.1 (3)
O8—C21—C22117.5 (5)C4—O2—Ni1125.9 (3)
C20—C21—C22119.7 (5)C10—O3—Ni1121.3 (3)
C21—C22—C23109.4 (4)C12—O4—Ni1128.1 (3)
C21—C22—C25109.6 (5)C17—O5—Ni1125.0 (5)
C23—C22—C25110.3 (5)C17—O5—H5A109 (4)
C21—C22—C24107.7 (4)Ni1—O5—H5A121 (4)
C23—C22—C24110.7 (5)Ni1—O5—H5B100 (6)
C25—C22—C24109.1 (5)H5A—O5—H5B111 (3)
C22—C23—H23A109.5Ni1—O6—H6D112 (4)
C22—C23—H23B109.5Ni1—O6—H6E120 (4)
H23A—C23—H23B109.5H6D—O6—H6E112 (5)
C22—C23—H23C109.5C19—O7—Ni2122.4 (3)
H23A—C23—H23C109.5C21—O8—Ni2127.8 (3)
H23B—C23—H23C109.5C27—O9—Ni2119.3 (3)
C22—C24—H24A109.5C29—O10—Ni2125.7 (3)
C22—C24—H24B109.5C34—O11—Ni2124.2 (3)
H24A—C24—H24B109.5C34—O11—H11A111 (4)
C22—C24—H24C109.5Ni2—O11—H11A116 (4)
H24A—C24—H24C109.5C35—O12—Ni2118.8 (5)
H24B—C24—H24C109.5C35—O12—H12A110 (4)
C22—C25—H25A109.5Ni2—O12—H12A112 (4)
C22—C25—H25B109.5Ni2—O12—H12B99 (9)
H25A—C25—H25B109.5H12A—O12—H12B107 (3)
F2—C1—C2—O1179.9 (4)C28—C29—C30—C32B17.2 (12)
F3—C1—C2—O159.5 (5)O10—C29—C30—C33128.3 (6)
F1—C1—C2—O158.8 (6)C28—C29—C30—C3353.7 (7)
F2—C1—C2—C30.2 (7)O10—C29—C30—C31B52.3 (8)
F3—C1—C2—C3120.6 (5)C28—C29—C30—C31B125.7 (8)
F1—C1—C2—C3121.1 (5)C3—C2—O1—Ni115.5 (6)
O1—C2—C3—C42.6 (8)C1—C2—O1—Ni1164.6 (3)
C1—C2—C3—C4177.3 (4)O4—Ni1—O1—C263.7 (3)
C2—C3—C4—O24.0 (7)O2—Ni1—O1—C222.9 (3)
C2—C3—C4—C5178.7 (4)O3—Ni1—O1—C2154.8 (3)
O2—C4—C5—C6155.5 (4)O6—Ni1—O1—C2112.5 (3)
C3—C4—C5—C627.0 (6)C3—C4—O2—Ni114.1 (6)
O2—C4—C5—C883.9 (5)C5—C4—O2—Ni1163.3 (3)
C3—C4—C5—C893.6 (5)O4—Ni1—O2—C465.2 (3)
O2—C4—C5—C733.8 (5)O1—Ni1—O2—C423.5 (3)
C3—C4—C5—C7148.7 (4)O6—Ni1—O2—C4113.4 (3)
F4—C9—C10—O342.5 (7)O5—Ni1—O2—C4157.7 (3)
F6—C9—C10—O375.5 (6)C11—C10—O3—Ni13.3 (7)
F5—C9—C10—O3165.9 (5)C9—C10—O3—Ni1179.0 (3)
F4—C9—C10—C11139.4 (5)O4—Ni1—O3—C109.4 (3)
F6—C9—C10—C11102.6 (6)O1—Ni1—O3—C1079.3 (3)
F5—C9—C10—C1116.1 (7)O6—Ni1—O3—C10169.2 (3)
O3—C10—C11—C124.0 (9)O5—Ni1—O3—C10102.0 (3)
C9—C10—C11—C12173.7 (5)C11—C12—O4—Ni111.3 (7)
C10—C11—C12—O40.2 (8)C13—C12—O4—Ni1169.9 (3)
C10—C11—C12—C13178.9 (5)O2—Ni1—O4—C12166.5 (4)
O4—C12—C13—C1411.2 (6)O1—Ni1—O4—C1275.8 (4)
C11—C12—C13—C14170.0 (4)O3—Ni1—O4—C1213.9 (4)
O4—C12—C13—C16108.5 (5)O5—Ni1—O4—C12100.9 (4)
C11—C12—C13—C1670.3 (5)O4—Ni1—O5—C1739.8 (5)
O4—C12—C13—C15130.8 (4)O2—Ni1—O5—C17126.6 (5)
C11—C12—C13—C1550.3 (6)O3—Ni1—O5—C1751.1 (5)
F7—C18—C19—O7178.4 (4)O6—Ni1—O5—C17143.8 (5)
F9—C18—C19—O760.8 (6)C20—C19—O7—Ni25.1 (7)
F8—C18—C19—O757.5 (5)C18—C19—O7—Ni2176.1 (3)
F7—C18—C19—C202.7 (6)O8—Ni2—O7—C1910.1 (3)
F9—C18—C19—C20118.1 (5)O9—Ni2—O7—C1978.9 (3)
F8—C18—C19—C20123.6 (5)O11—Ni2—O7—C19100.5 (3)
O7—C19—C20—C213.1 (8)O12—Ni2—O7—C19171.3 (3)
C18—C19—C20—C21175.6 (4)C20—C21—O8—Ni28.8 (7)
C19—C20—C21—O81.3 (8)C22—C21—O8—Ni2171.3 (3)
C19—C20—C21—C22178.6 (5)O10—Ni2—O8—C21167.3 (4)
O8—C21—C22—C23124.7 (6)O7—Ni2—O8—C2112.5 (4)
C20—C21—C22—C2355.2 (7)O9—Ni2—O8—C2178.3 (4)
O8—C21—C22—C253.6 (7)O11—Ni2—O8—C21101.5 (4)
C20—C21—C22—C25176.3 (5)C28—C27—O9—Ni226.1 (7)
O8—C21—C22—C24115.0 (5)C26—C27—O9—Ni2153.3 (3)
C20—C21—C22—C2465.1 (6)O8—Ni2—O9—C2757.6 (3)
F10—C26—C27—O952.4 (5)O10—Ni2—O9—C2732.3 (3)
F12—C26—C27—O966.9 (5)O7—Ni2—O9—C27148.6 (3)
F11—C26—C27—O9173.4 (4)O12—Ni2—O9—C27120.5 (3)
F10—C26—C27—C28127.0 (5)C28—C29—O10—Ni28.3 (7)
F12—C26—C27—C28113.6 (5)C30—C29—O10—Ni2173.8 (3)
F11—C26—C27—C286.1 (7)O8—Ni2—O10—C2963.7 (4)
O9—C27—C28—C291.3 (8)O9—Ni2—O10—C2925.3 (4)
C26—C27—C28—C29179.3 (4)O11—Ni2—O10—C29154.1 (4)
C27—C28—C29—O1012.1 (8)O12—Ni2—O10—C29117.8 (4)
C27—C28—C29—C30165.8 (5)O8—Ni2—O11—C3444.0 (5)
O10—C29—C30—C32111.8 (6)O10—Ni2—O11—C3445.9 (5)
C28—C29—C30—C3266.2 (7)O7—Ni2—O11—C34135.0 (5)
O10—C29—C30—C33B63.0 (16)O12—Ni2—O11—C34134.1 (5)
C28—C29—C30—C33B119.0 (16)O10—Ni2—O12—C3531.0 (5)
O10—C29—C30—C3111.8 (8)O7—Ni2—O12—C35148.8 (5)
C28—C29—C30—C31170.2 (6)O9—Ni2—O12—C3557.9 (5)
O10—C29—C30—C32B160.8 (11)O11—Ni2—O12—C35122.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O9i0.82 (4)1.87 (2)2.692 (4)175 (5)
O6—H6D···O70.84 (4)1.89 (2)2.701 (4)164 (5)
O6—H6E···O12i0.81 (4)2.16 (2)2.951 (5)164 (5)
O11—H11A···O10.85 (5)1.93 (5)2.764 (4)166 (5)
O12—H12A···O30.84 (2)1.94 (2)2.778 (4)173 (5)
O12—H12B···O100.84 (2)2.5 (1)2.861 (4)108 (11)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H10F3O2)2(CH4O)1.55(H2O)0.45] [Ni(C8H10F3O2)2(CH4O)0.51(H2O)1.49]
Mr998.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.327 (2), 14.701 (3), 15.432 (3)
α, β, γ (°)101.379 (3), 104.946 (3), 107.678 (3)
V3)2257.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2008)
Tmin, Tmax0.570, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
22225, 10979, 5010
Rint0.075
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.155, 1.00
No. of reflections10979
No. of parameters619
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.60

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O9i0.82 (4)1.87 (2)2.692 (4)175 (5)
O6—H6D···O70.84 (4)1.89 (2)2.701 (4)164 (5)
O6—H6E···O12i0.81 (4)2.16 (2)2.951 (5)164 (5)
O11—H11A···O10.85 (5)1.93 (5)2.764 (4)166 (5)
O12—H12A···O30.84 (2)1.94 (2)2.778 (4)173 (5)
O12—H12B···O100.84 (2)2.5 (1)2.861 (4)108 (11)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

GOH thanks Mr Jordan Lerach for his fundamental contributions to the initial stages of this continuing research project. The diffractometer was funded by NSF grant 00871210, by the Ohio Board of Reagents grant CAP-491 and by YSU.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurtoloso, A. (2005). Synlett, 18, 2859–2860.  Web of Science CrossRef Google Scholar
First citationCondorelli, G. G., Motta, A., Bedoya, C., Di Mauro, G. P. & Smecca, E. (2007). Inorg. Chim. Acta, 360, 170–178.  Web of Science CrossRef CAS Google Scholar
First citationHunter, G. O., Zeller, M. & Leskiw, B. D. (2009). Acta Cryst. E65, m24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatok, K. V., Tertykh, V. A., Brichka, S. Y. & Prikhod, G. P. (2006). J. Therm. Anal. Calorim. 86, 109–114.  Web of Science CrossRef CAS Google Scholar
First citationLerach, O. J. & Leskiw, B. D. (2008). Rapid Commun. Mass Spectrom. 22, 4139–4146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLerach, J. O., Zeller, M. & Leskiw, B. D. (2007). Acta Cryst. E63, m2639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchildcrout, S. M. (1976). J. Phys. Chem. 80, 2834–2838.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Lin, C. (1966). Inorg. Chem. 5, 1074–1077.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m221-m222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds