organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Ethyl-3-(2-methyl­benzo­yl)-9H-carbazole

aCollege of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China, and bSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: hangyechao@yahoo.com.cn

(Received 15 December 2008; accepted 7 January 2009; online 10 January 2009)

In the title compound, C22H19NO, the dihedral angle between the benzene ring and the carbazole ring system 77.1 (1)°.. The crystal structure is stabilized by inter­molecular aromatic ππ inter­actions between the benzene ring and the pyrrole ring of the carbazole system of neighbouring mol­ecules [centroid–centroid distance = 3.617 (4) Å]. In addition, the crystal structure exhibits a weak inter­molecular C—H⋯π inter­action.

Related literature

For the synthesis, see Feng et al. (2007[Feng, Y., Chen, Q. R., Li, W. S. & Xie, C. (2007). Chem. Res. Appl. 19, 1162-1165.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background, see: Bai et al. (2007[Bai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93-98.]); Promarak et al. (2007[Promarak, V., Saengsuwan, S., Jungsuttiwong, S., Sudyoadsuk, T. & Keawin, T. (2007). Tetrahedron Lett., 48, 89-93.]); Liu et al. (2009[Liu, S., Jiang, P., Song, G. L., Liu, R. & Zhu, H. J. (2009). Dyes Pigments, doi: 10.1016/j.dyepig.2008.10.010.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO

  • Mr = 313.38

  • Monoclinic, P 21 /c

  • a = 11.676 (2) Å

  • b = 10.569 (2) Å

  • c = 13.756 (3) Å

  • β = 96.48 (3)°

  • V = 1686.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 3053 measured reflections

  • 3053 independent reflections

  • 2046 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.173

  • S = 1.08

  • 3053 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22BCg3i 0.96 2.71 3.501 (4) 140
Symmetry codes: (i) -x, -y+1, -z. Cg3 is the centroids of the C16–C21 benzene ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is one of important intermediates in synthesis of carbazole-containing compounds used as organic optoelectronic materials which have the characteristic of large ππ conjugation bones (Bai et al. 2007; Promarak et al. 2007; Liu et al. 2009). Here we report the crystal structure of the title compound, 9-ethyl-3-(2-methylbenzoyl)carbazole (Fig. 1).

In the title compound, the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings of A (C3–8), B (C3/C8/C9/C14/N), C (C9–14) and D (C16–21) are approximately plane, and dihedral angles of the four rings are: A/B = 1.1 (1)°, B/C = 2.6 (1)°, C/D = 76.0 (2)°. The crystals structure is stabilized by intermolecular aromatic ππ interactions between the benzene ring and the pyrrole ring of the carbazole system of neighbouring molecules. The Cg1···Cg2iii distance is 3.617 (4) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the C3/C8/C9/C14/N pyrrole ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···π interactions ; one between the hydrogen on the benzene ring and the benzene ring of neighbouring molecules (C12—H12A···Cg1i), a second the hydrogen on the benzene ring and the pyrrole ring of neighbouring molecules (C13—H13A···Cg2i), a third between the hydrogen of C–22 methyl group and the benzene ring of neighbouring molecules (C22—H22B···Cg3ii) (Fig. 2 and Table 1; Cg3 is the centroids of the C16–C21 benzene ring, symmetry code as in Fig. 2).

Related literature top

For the synthesis, see Feng et al. (2007); For bond-length data, see: Allen et al. (1987). For background, see: Bai et al. (2007); Promarak et al. (2007); Liu et al. (2009). Cg1, Cg2 and Cg3 are the centroids of the C3–C8 benzene ring, the C3/C8/C9/C14/N pyrrole ring and the C16–C21 benzene ring, respectively.

Experimental top

The title compound, (I) was prepared by a silimar method reported in literature (Feng et al., 2007) with some modification. The crystals were obtained by dissolving I (0.15 g) in a mixture solvent of methanol (30 ml) and dichloromethane (20 ml) and evaporating the solvent slowly at room temperature for about 2 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. ππ and C—H···π interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -x+1, y-1/2, -z+1/2; (ii) -x, -y+1, -z (iii) -x+1, -y+1, -z+1; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+1/2, z+1/2.]
9-Ethyl-3-(2-methylbenzoyl)-9H-carbazole top
Crystal data top
C22H19NOF(000) = 664
Mr = 313.38Dx = 1.234 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.676 (2) Åθ = 9–13°
b = 10.569 (2) ŵ = 0.08 mm1
c = 13.756 (3) ÅT = 298 K
β = 96.48 (3)°Plate, colorless
V = 1686.7 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 1413
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.978, Tmax = 0.993l = 016
3053 measured reflections3 standard reflections every 200 reflections
3053 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: difference Fourier map
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.9857P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C22H19NOV = 1686.7 (6) Å3
Mr = 313.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.676 (2) ŵ = 0.08 mm1
b = 10.569 (2) ÅT = 298 K
c = 13.756 (3) Å0.30 × 0.20 × 0.10 mm
β = 96.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2046 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.978, Tmax = 0.9933 standard reflections every 200 reflections
3053 measured reflections intensity decay: 1%
3053 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
3053 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.04033 (19)0.4866 (2)0.24020 (17)0.0606 (7)
N0.5747 (2)0.5162 (3)0.36517 (18)0.0451 (6)
C10.7412 (3)0.4981 (4)0.2716 (3)0.0768 (12)
H1A0.81130.45150.26860.115*
H1B0.75880.58640.28080.115*
H1C0.69170.48680.21160.115*
C20.6818 (3)0.4509 (4)0.3554 (2)0.0554 (9)
H2A0.66610.36130.34650.066*
H2B0.73300.46100.41550.066*
C30.5588 (3)0.6168 (3)0.4282 (2)0.0456 (8)
C40.6411 (3)0.6748 (4)0.4954 (2)0.0576 (9)
H4A0.71770.64920.50330.069*
C50.6016 (4)0.7725 (4)0.5493 (3)0.0660 (11)
H5A0.65320.81180.59630.079*
C60.4896 (4)0.8141 (3)0.5365 (3)0.0640 (10)
H6A0.46810.88270.57270.077*
C70.4076 (3)0.7551 (3)0.4703 (2)0.0549 (9)
H7A0.33110.78170.46300.066*
C80.4436 (3)0.6549 (3)0.4150 (2)0.0402 (7)
C90.3850 (2)0.5716 (3)0.3427 (2)0.0393 (7)
C100.2712 (3)0.5577 (3)0.3037 (2)0.0414 (7)
H10A0.21490.61170.32280.050*
C110.2415 (2)0.4626 (3)0.2359 (2)0.0414 (7)
C120.3274 (3)0.3846 (3)0.2051 (2)0.0458 (8)
H12A0.30700.32360.15750.055*
C130.4413 (3)0.3958 (3)0.2433 (2)0.0451 (7)
H13A0.49760.34230.22350.054*
C140.4691 (2)0.4903 (3)0.3127 (2)0.0395 (7)
C150.1190 (3)0.4411 (3)0.1988 (2)0.0433 (7)
C160.0876 (2)0.3582 (3)0.1113 (2)0.0380 (7)
C170.0254 (3)0.2480 (3)0.1238 (2)0.0511 (8)
H17A0.00640.22740.18570.061*
C180.0088 (3)0.1689 (3)0.0462 (3)0.0604 (9)
H18A0.04890.09480.05600.072*
C190.0167 (3)0.2000 (3)0.0451 (3)0.0588 (9)
H19A0.00600.14740.09790.071*
C200.0767 (3)0.3106 (3)0.0587 (2)0.0524 (8)
H20A0.09140.33220.12160.063*
C210.1159 (2)0.3909 (3)0.0190 (2)0.0421 (7)
C220.1797 (3)0.5092 (3)0.0004 (2)0.0508 (8)
H22A0.20300.55100.06130.076*
H22B0.13050.56420.04120.076*
H22C0.24660.48840.03100.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0475 (13)0.0765 (18)0.0590 (14)0.0061 (12)0.0109 (11)0.0164 (13)
N0.0360 (13)0.0548 (17)0.0444 (14)0.0025 (12)0.0042 (11)0.0022 (13)
C10.055 (2)0.101 (3)0.079 (3)0.000 (2)0.022 (2)0.010 (2)
C20.0350 (17)0.073 (2)0.057 (2)0.0078 (16)0.0005 (14)0.0077 (18)
C30.0535 (19)0.0459 (18)0.0378 (16)0.0090 (15)0.0062 (14)0.0069 (14)
C40.061 (2)0.066 (2)0.0453 (18)0.0179 (19)0.0015 (16)0.0135 (18)
C50.082 (3)0.065 (3)0.048 (2)0.029 (2)0.0035 (19)0.0012 (19)
C60.086 (3)0.047 (2)0.058 (2)0.012 (2)0.004 (2)0.0085 (18)
C70.069 (2)0.0419 (19)0.055 (2)0.0072 (17)0.0134 (17)0.0039 (16)
C80.0474 (17)0.0347 (16)0.0390 (15)0.0078 (13)0.0067 (13)0.0000 (13)
C90.0436 (16)0.0357 (16)0.0392 (15)0.0034 (13)0.0080 (13)0.0042 (13)
C100.0467 (17)0.0364 (16)0.0417 (16)0.0084 (14)0.0076 (13)0.0028 (13)
C110.0424 (17)0.0423 (18)0.0400 (16)0.0050 (14)0.0070 (13)0.0048 (14)
C120.0475 (18)0.0461 (18)0.0438 (17)0.0018 (15)0.0047 (14)0.0114 (15)
C130.0447 (17)0.0450 (18)0.0459 (17)0.0078 (14)0.0061 (14)0.0102 (15)
C140.0365 (15)0.0432 (17)0.0393 (15)0.0024 (13)0.0060 (12)0.0016 (13)
C150.0465 (17)0.0463 (18)0.0375 (15)0.0032 (15)0.0071 (14)0.0018 (14)
C160.0338 (14)0.0382 (16)0.0411 (15)0.0042 (13)0.0006 (12)0.0021 (13)
C170.058 (2)0.0434 (19)0.0521 (18)0.0050 (16)0.0080 (16)0.0064 (16)
C180.065 (2)0.046 (2)0.070 (2)0.0097 (17)0.0068 (19)0.0054 (18)
C190.063 (2)0.053 (2)0.058 (2)0.0001 (18)0.0026 (18)0.0151 (18)
C200.0509 (19)0.061 (2)0.0444 (17)0.0020 (17)0.0023 (15)0.0029 (16)
C210.0371 (16)0.0461 (18)0.0432 (16)0.0034 (13)0.0043 (13)0.0011 (14)
C220.0528 (19)0.0474 (19)0.0525 (19)0.0042 (15)0.0066 (15)0.0100 (16)
Geometric parameters (Å, º) top
O—C151.231 (3)C10—C111.388 (4)
N—C141.384 (4)C10—H10A0.9300
N—C31.397 (4)C11—C121.400 (4)
N—C21.448 (4)C11—C151.481 (4)
C1—C21.497 (5)C12—C131.380 (4)
C1—H1A0.9600C12—H12A0.9300
C1—H1B0.9600C13—C141.394 (4)
C1—H1C0.9600C13—H13A0.9300
C2—H2A0.9700C15—C161.501 (4)
C2—H2B0.9700C16—C171.392 (4)
C3—C41.397 (4)C16—C211.392 (4)
C3—C81.397 (4)C17—C181.379 (5)
C4—C51.380 (5)C17—H17A0.9300
C4—H4A0.9300C18—C191.363 (5)
C5—C61.373 (5)C18—H18A0.9300
C5—H5A0.9300C19—C201.385 (5)
C6—C71.393 (5)C19—H19A0.9300
C6—H6A0.9300C20—C211.401 (4)
C7—C81.396 (4)C20—H20A0.9300
C7—H7A0.9300C21—C221.492 (4)
C8—C91.441 (4)C22—H22A0.9600
C9—C101.385 (4)C22—H22B0.9600
C9—C141.401 (4)C22—H22C0.9600
C14—N—C3107.6 (2)C10—C11—C12119.8 (3)
C14—N—C2125.8 (3)C10—C11—C15120.0 (3)
C3—N—C2126.6 (3)C12—C11—C15120.2 (3)
C2—C1—H1A109.5C13—C12—C11121.8 (3)
C2—C1—H1B109.5C13—C12—H12A119.1
H1A—C1—H1B109.5C11—C12—H12A119.1
C2—C1—H1C109.5C12—C13—C14117.5 (3)
H1A—C1—H1C109.5C12—C13—H13A121.2
H1B—C1—H1C109.5C14—C13—H13A121.2
N—C2—C1113.1 (3)N—C14—C13128.6 (3)
N—C2—H2A109.0N—C14—C9109.7 (3)
C1—C2—H2A109.0C13—C14—C9121.7 (3)
N—C2—H2B109.0O—C15—C11121.5 (3)
C1—C2—H2B109.0O—C15—C16118.1 (3)
H2A—C2—H2B107.8C11—C15—C16120.3 (3)
N—C3—C4128.0 (3)C17—C16—C21120.0 (3)
N—C3—C8109.4 (3)C17—C16—C15118.3 (3)
C4—C3—C8122.6 (3)C21—C16—C15121.7 (3)
C5—C4—C3116.0 (3)C18—C17—C16121.4 (3)
C5—C4—H4A122.0C18—C17—H17A119.3
C3—C4—H4A122.0C16—C17—H17A119.3
C6—C5—C4122.8 (3)C19—C18—C17119.5 (3)
C6—C5—H5A118.6C19—C18—H18A120.2
C4—C5—H5A118.6C17—C18—H18A120.2
C5—C6—C7121.0 (4)C18—C19—C20119.6 (3)
C5—C6—H6A119.5C18—C19—H19A120.2
C7—C6—H6A119.5C20—C19—H19A120.2
C6—C7—C8118.0 (3)C19—C20—C21122.3 (3)
C6—C7—H7A121.0C19—C20—H20A118.8
C8—C7—H7A121.0C21—C20—H20A118.8
C7—C8—C3119.6 (3)C16—C21—C20117.0 (3)
C7—C8—C9133.7 (3)C16—C21—C22122.7 (3)
C3—C8—C9106.7 (3)C20—C21—C22120.2 (3)
C10—C9—C14119.6 (3)C21—C22—H22A109.5
C10—C9—C8133.8 (3)C21—C22—H22B109.5
C14—C9—C8106.6 (3)H22A—C22—H22B109.5
C9—C10—C11119.6 (3)C21—C22—H22C109.5
C9—C10—H10A120.2H22A—C22—H22C109.5
C11—C10—H10A120.2H22B—C22—H22C109.5
C14—N—C2—C182.1 (4)C2—N—C14—C132.5 (5)
C3—N—C2—C197.4 (4)C3—N—C14—C91.2 (3)
C14—N—C3—C4179.7 (3)C2—N—C14—C9179.2 (3)
C2—N—C3—C40.7 (5)C12—C13—C14—N176.2 (3)
C14—N—C3—C80.4 (3)C12—C13—C14—C90.2 (5)
C2—N—C3—C8179.2 (3)C10—C9—C14—N176.4 (3)
N—C3—C4—C5179.6 (3)C8—C9—C14—N2.2 (3)
C8—C3—C4—C50.5 (5)C10—C9—C14—C130.6 (4)
C3—C4—C5—C62.0 (5)C8—C9—C14—C13179.2 (3)
C4—C5—C6—C72.8 (6)C10—C11—C15—O15.2 (5)
C5—C6—C7—C82.0 (5)C12—C11—C15—O162.8 (3)
C6—C7—C8—C30.5 (5)C10—C11—C15—C16167.3 (3)
C6—C7—C8—C9178.6 (3)C12—C11—C15—C1614.7 (4)
N—C3—C8—C7179.7 (3)O—C15—C16—C1760.7 (4)
C4—C3—C8—C70.2 (5)C11—C15—C16—C17116.9 (3)
N—C3—C8—C91.8 (3)O—C15—C16—C21117.3 (3)
C4—C3—C8—C9178.3 (3)C11—C15—C16—C2165.2 (4)
C7—C8—C9—C102.4 (6)C21—C16—C17—C180.5 (5)
C3—C8—C9—C10175.9 (3)C15—C16—C17—C18178.5 (3)
C7—C8—C9—C14179.3 (3)C16—C17—C18—C191.3 (5)
C3—C8—C9—C142.4 (3)C17—C18—C19—C200.1 (5)
C14—C9—C10—C110.6 (4)C18—C19—C20—C212.1 (5)
C8—C9—C10—C11177.5 (3)C17—C16—C21—C201.5 (4)
C9—C10—C11—C122.2 (4)C15—C16—C21—C20176.4 (3)
C9—C10—C11—C15175.7 (3)C17—C16—C21—C22178.4 (3)
C10—C11—C12—C132.8 (5)C15—C16—C21—C220.5 (4)
C15—C11—C12—C13175.2 (3)C19—C20—C21—C162.8 (5)
C11—C12—C13—C141.5 (5)C19—C20—C21—C22179.8 (3)
C3—N—C14—C13177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.933.133.730 (4)124
C13—H13A···Cg2i0.933.183.928 (4)138
C22—H22B···Cg3ii0.962.713.501 (4)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19NO
Mr313.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.676 (2), 10.569 (2), 13.756 (3)
β (°) 96.48 (3)
V3)1686.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
3053, 3053, 2046
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.173, 1.08
No. of reflections3053
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.933.133.730 (4)123.9
C13—H13A···Cg2i0.933.183.928 (4)138.4
C22—H22B···Cg3ii0.962.713.501 (4)139.9
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFeng, Y., Chen, Q. R., Li, W. S. & Xie, C. (2007). Chem. Res. Appl. 19, 1162–1165.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, S., Jiang, P., Song, G. L., Liu, R. & Zhu, H. J. (2009). Dyes Pigments, doi: 10.1016/j.dyepig.2008.10.010.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPromarak, V., Saengsuwan, S., Jungsuttiwong, S., Sudyoadsuk, T. & Keawin, T. (2007). Tetrahedron Lett., 48, 89–93.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds