metal-organic compounds
{2-[1-(2-Amino-2-methylpropylimino)ethyl]phenolato-κ3N,N′,O}dioxidovanadium(V)
aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland
*Correspondence e-mail: greg@chem.univ.gda.pl
In the 12H17N2O)O2], the vanadium(V) centre is five-coordinate in a distorted square-pyramidal environment. The three atoms of the deprotonated Schiff base and a double-bonded O atom comprise the basal plane. N—H⋯O hydrogen bonds lead to a zigzag chain structure parallel to [001].
of the title compound, [V(CRelated literature
For general background, see: Carter-Franklin et al. (2003); Eady (2003); Evangelou (2002); Mendz (1991); Mokry & Carrano (1993); Parekh et al. (2006); Rehder et al. (2002, 2003); Shahzadi et al. (2007). For related structures, see: Kwiatkowski et al. (2003, 2007); Rao et al. (1981). For synthesis, see: Kwiatkowski et al. (2003). For the calculation of square-pyramidal geometries, see: Holmes (1984).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808042839/ng2526sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042839/ng2526Isup2.hkl
The complex (I) were obtained in a template/complexation reactions analogous to those described for preparation of dioxidovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A solution of 1 mmol of 2-methyl-1,2-diaminopropane in 10 ml of absolute ethanol was added under stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (1 mmol) in 50 ml of absolute EtOH producing a yellow suspension of the intermediate. 2-Acetylphenol (1 mmol) dissolved in absolute EtOH was added to the aforementioned suspension. After refluxing (70 ml) of the resulting mixture for 2 h and its cooling to room temperature the separated solids were filtered off, washed several times with EtOH and dried over molecular sieves.
All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and with N–H distances of 0.90Å and with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).[V(C12H17N2O)O2] | F(000) = 600 |
Mr = 288.22 | Dx = 1.431 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2126 reflections |
a = 11.1198 (6) Å | θ = 3.2–25.1° |
b = 15.7408 (8) Å | µ = 0.74 mm−1 |
c = 7.6448 (3) Å | T = 295 K |
V = 1338.10 (11) Å3 | Needle, white |
Z = 4 | 0.2 × 0.04 × 0.04 mm |
Oxford Diffraction Ruby CCD diffractometer | 2126 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1387 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.2° |
ω scans | h = −12→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −18→18 |
Tmin = 0.941, Tmax = 0.964 | l = −9→7 |
11574 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0211P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max < 0.001 |
2126 reflections | Δρmax = 0.19 e Å−3 |
167 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 849 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.23 (2) |
[V(C12H17N2O)O2] | V = 1338.10 (11) Å3 |
Mr = 288.22 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 11.1198 (6) Å | µ = 0.74 mm−1 |
b = 15.7408 (8) Å | T = 295 K |
c = 7.6448 (3) Å | 0.2 × 0.04 × 0.04 mm |
Oxford Diffraction Ruby CCD diffractometer | 2126 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1387 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 0.964 | Rint = 0.071 |
11574 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.051 | Δρmax = 0.19 e Å−3 |
S = 0.83 | Δρmin = −0.16 e Å−3 |
2126 reflections | Absolute structure: Flack (1983), 849 Friedel pairs |
167 parameters | Absolute structure parameter: 0.23 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3317 (3) | 0.3973 (2) | 0.5333 (4) | 0.0380 (8) | |
C2 | 0.2695 (3) | 0.37563 (19) | 0.6865 (4) | 0.0354 (8) | |
C3 | 0.3314 (3) | 0.37812 (17) | 0.8474 (6) | 0.0512 (8) | |
H3A | 0.2903 | 0.3651 | 0.9499 | 0.061* | |
C4 | 0.4498 (3) | 0.3992 (2) | 0.8561 (6) | 0.0560 (10) | |
H4A | 0.4887 | 0.4012 | 0.9637 | 0.067* | |
C5 | 0.5121 (3) | 0.4175 (2) | 0.7045 (6) | 0.0602 (11) | |
H5A | 0.5931 | 0.4319 | 0.7101 | 0.072* | |
C6 | 0.4544 (3) | 0.4145 (2) | 0.5448 (5) | 0.0510 (10) | |
H6A | 0.4982 | 0.4240 | 0.4431 | 0.061* | |
C7 | 0.1437 (3) | 0.34815 (19) | 0.6801 (4) | 0.0399 (8) | |
N8 | 0.0753 (2) | 0.36544 (15) | 0.5463 (3) | 0.0378 (7) | |
C9 | −0.0510 (3) | 0.3371 (2) | 0.5463 (4) | 0.0422 (9) | |
H9A | −0.0956 | 0.3677 | 0.6353 | 0.051* | |
H9B | −0.0549 | 0.2770 | 0.5733 | 0.051* | |
C10 | −0.1063 (3) | 0.3534 (2) | 0.3683 (4) | 0.0407 (9) | |
N11 | −0.06106 (19) | 0.44045 (15) | 0.3205 (5) | 0.0408 (6) | |
H11A | −0.0946 | 0.4790 | 0.3925 | 0.049* | |
H11B | −0.0844 | 0.4528 | 0.2107 | 0.049* | |
V12 | 0.12859 (4) | 0.45059 (3) | 0.33674 (6) | 0.03758 (15) | |
O13 | 0.27910 (18) | 0.39910 (13) | 0.3758 (3) | 0.0456 (6) | |
O14 | 0.1359 (2) | 0.45725 (14) | 0.1236 (2) | 0.0467 (6) | |
O15 | 0.1372 (2) | 0.54432 (13) | 0.4218 (2) | 0.0483 (6) | |
C26 | 0.0950 (3) | 0.29854 (18) | 0.8337 (6) | 0.0592 (9) | |
H26A | 0.0162 | 0.2776 | 0.8060 | 0.089* | |
H26B | 0.0905 | 0.3349 | 0.9343 | 0.089* | |
H26C | 0.1474 | 0.2516 | 0.8584 | 0.089* | |
C27 | −0.0620 (3) | 0.2904 (2) | 0.2305 (5) | 0.0536 (9) | |
H27A | 0.0243 | 0.2886 | 0.2320 | 0.080* | |
H27B | −0.0890 | 0.3081 | 0.1170 | 0.080* | |
H27C | −0.0933 | 0.2349 | 0.2559 | 0.080* | |
C28 | −0.2434 (3) | 0.3536 (2) | 0.3770 (5) | 0.0699 (12) | |
H28A | −0.2697 | 0.3960 | 0.4587 | 0.105* | |
H28B | −0.2713 | 0.2988 | 0.4143 | 0.105* | |
H28C | −0.2756 | 0.3661 | 0.2633 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.039 (2) | 0.0260 (19) | 0.049 (2) | 0.0093 (17) | 0.0054 (19) | 0.0025 (17) |
C2 | 0.041 (2) | 0.0303 (19) | 0.035 (2) | 0.0077 (17) | 0.0034 (17) | −0.0038 (16) |
C3 | 0.064 (2) | 0.0462 (19) | 0.043 (2) | 0.0081 (17) | 0.007 (3) | 0.005 (3) |
C4 | 0.058 (3) | 0.056 (2) | 0.054 (3) | 0.0082 (19) | −0.009 (3) | −0.016 (3) |
C5 | 0.039 (2) | 0.053 (3) | 0.089 (3) | −0.0058 (19) | −0.002 (3) | −0.005 (2) |
C6 | 0.050 (3) | 0.051 (2) | 0.052 (2) | 0.001 (2) | 0.009 (2) | 0.003 (2) |
C7 | 0.056 (2) | 0.0311 (19) | 0.033 (2) | 0.0004 (19) | 0.0127 (18) | −0.0038 (14) |
N8 | 0.0384 (19) | 0.0394 (17) | 0.0355 (16) | 0.0009 (14) | 0.0112 (14) | −0.0026 (14) |
C9 | 0.053 (3) | 0.039 (2) | 0.0346 (19) | −0.0049 (19) | 0.0174 (18) | −0.0038 (17) |
C10 | 0.038 (2) | 0.0445 (19) | 0.040 (2) | −0.0079 (17) | 0.0074 (17) | −0.0095 (18) |
N11 | 0.0423 (14) | 0.0400 (14) | 0.0400 (13) | 0.0048 (13) | −0.0037 (18) | −0.0058 (18) |
V12 | 0.0404 (3) | 0.0357 (3) | 0.0366 (3) | 0.0011 (3) | 0.0062 (4) | 0.0047 (4) |
O13 | 0.0417 (13) | 0.0517 (14) | 0.0434 (17) | 0.0064 (10) | 0.0104 (11) | 0.0074 (12) |
O14 | 0.0508 (14) | 0.0579 (14) | 0.0315 (11) | 0.0065 (16) | 0.0078 (11) | 0.0070 (11) |
O15 | 0.0559 (16) | 0.0353 (13) | 0.0538 (12) | −0.0029 (13) | 0.0005 (11) | −0.0044 (11) |
C26 | 0.082 (3) | 0.0554 (19) | 0.0399 (16) | −0.0127 (18) | 0.015 (3) | 0.005 (3) |
C27 | 0.067 (2) | 0.047 (2) | 0.0469 (18) | −0.008 (2) | 0.013 (2) | −0.007 (2) |
C28 | 0.046 (2) | 0.085 (3) | 0.078 (3) | −0.017 (2) | 0.004 (2) | −0.004 (3) |
C1—O13 | 1.339 (4) | C10—N11 | 1.504 (4) |
C1—C6 | 1.393 (5) | C10—C28 | 1.527 (4) |
C1—C2 | 1.402 (4) | C10—C27 | 1.529 (4) |
C2—C3 | 1.410 (5) | N11—V12 | 2.118 (2) |
C2—C7 | 1.465 (4) | N11—H11A | 0.9000 |
C3—C4 | 1.359 (4) | N11—H11B | 0.9000 |
C3—H3A | 0.9300 | V12—O15 | 1.6151 (19) |
C4—C5 | 1.380 (5) | V12—O14 | 1.6352 (18) |
C4—H4A | 0.9300 | V12—O13 | 1.883 (2) |
C5—C6 | 1.380 (4) | C26—H26A | 0.9600 |
C5—H5A | 0.9300 | C26—H26B | 0.9600 |
C6—H6A | 0.9300 | C26—H26C | 0.9600 |
C7—N8 | 1.304 (4) | C27—H27A | 0.9600 |
C7—C26 | 1.510 (4) | C27—H27B | 0.9600 |
N8—C9 | 1.473 (4) | C27—H27C | 0.9600 |
N8—V12 | 2.171 (3) | C28—H28A | 0.9600 |
C9—C10 | 1.515 (4) | C28—H28B | 0.9600 |
C9—H9A | 0.9700 | C28—H28C | 0.9600 |
C9—H9B | 0.9700 | ||
O13—C1—C6 | 118.7 (3) | C10—N11—V12 | 112.76 (17) |
O13—C1—C2 | 122.7 (3) | C10—N11—H11A | 109.0 |
C6—C1—C2 | 118.5 (3) | V12—N11—H11A | 109.0 |
C1—C2—C3 | 118.7 (3) | C10—N11—H11B | 109.0 |
C1—C2—C7 | 121.0 (3) | V12—N11—H11B | 109.0 |
C3—C2—C7 | 120.2 (3) | H11A—N11—H11B | 107.8 |
C4—C3—C2 | 121.5 (4) | O15—V12—O14 | 109.85 (10) |
C4—C3—H3A | 119.2 | O15—V12—O13 | 106.06 (11) |
C2—C3—H3A | 119.2 | O14—V12—O13 | 98.12 (10) |
C3—C4—C5 | 119.7 (4) | O15—V12—N11 | 98.71 (11) |
C3—C4—H4A | 120.1 | O14—V12—N11 | 89.77 (13) |
C5—C4—H4A | 120.1 | O13—V12—N11 | 149.49 (10) |
C6—C5—C4 | 120.1 (4) | O15—V12—N8 | 106.46 (9) |
C6—C5—H5A | 119.9 | O14—V12—N8 | 142.05 (11) |
C4—C5—H5A | 119.9 | O13—V12—N8 | 81.94 (9) |
C5—C6—C1 | 121.2 (3) | N11—V12—N8 | 74.05 (12) |
C5—C6—H6A | 119.4 | C1—O13—V12 | 122.65 (18) |
C1—C6—H6A | 119.4 | C7—C26—H26A | 109.5 |
N8—C7—C2 | 121.4 (3) | C7—C26—H26B | 109.5 |
N8—C7—C26 | 120.6 (3) | H26A—C26—H26B | 109.5 |
C2—C7—C26 | 118.0 (3) | C7—C26—H26C | 109.5 |
C7—N8—C9 | 119.5 (3) | H26A—C26—H26C | 109.5 |
C7—N8—V12 | 123.3 (2) | H26B—C26—H26C | 109.5 |
C9—N8—V12 | 116.56 (19) | C10—C27—H27A | 109.5 |
N8—C9—C10 | 109.6 (2) | C10—C27—H27B | 109.5 |
N8—C9—H9A | 109.8 | H27A—C27—H27B | 109.5 |
C10—C9—H9A | 109.8 | C10—C27—H27C | 109.5 |
N8—C9—H9B | 109.8 | H27A—C27—H27C | 109.5 |
C10—C9—H9B | 109.8 | H27B—C27—H27C | 109.5 |
H9A—C9—H9B | 108.2 | C10—C28—H28A | 109.5 |
N11—C10—C9 | 103.7 (3) | C10—C28—H28B | 109.5 |
N11—C10—C28 | 110.0 (2) | H28A—C28—H28B | 109.5 |
C9—C10—C28 | 111.5 (3) | C10—C28—H28C | 109.5 |
N11—C10—C27 | 108.4 (3) | H28A—C28—H28C | 109.5 |
C9—C10—C27 | 112.2 (3) | H28B—C28—H28C | 109.5 |
C28—C10—C27 | 110.7 (3) | ||
O13—C1—C2—C3 | −178.0 (3) | N8—C9—C10—C27 | 74.2 (3) |
C6—C1—C2—C3 | 4.6 (4) | C9—C10—N11—V12 | 53.3 (3) |
O13—C1—C2—C7 | 4.0 (4) | C28—C10—N11—V12 | 172.7 (2) |
C6—C1—C2—C7 | −173.4 (3) | C27—C10—N11—V12 | −66.2 (3) |
C1—C2—C3—C4 | −1.5 (4) | C10—N11—V12—O15 | −139.7 (2) |
C7—C2—C3—C4 | 176.6 (3) | C10—N11—V12—O14 | 110.2 (3) |
C2—C3—C4—C5 | −0.9 (5) | C10—N11—V12—O13 | 4.5 (4) |
C3—C4—C5—C6 | 0.0 (5) | C10—N11—V12—N8 | −35.0 (2) |
C4—C5—C6—C1 | 3.4 (6) | C7—N8—V12—O15 | −66.8 (3) |
O13—C1—C6—C5 | 176.9 (3) | C9—N8—V12—O15 | 103.9 (2) |
C2—C1—C6—C5 | −5.6 (5) | C7—N8—V12—O14 | 130.5 (2) |
C1—C2—C7—N8 | −20.0 (4) | C9—N8—V12—O14 | −58.7 (3) |
C3—C2—C7—N8 | 162.0 (3) | C7—N8—V12—O13 | 37.6 (2) |
C1—C2—C7—C26 | 159.8 (3) | C9—N8—V12—O13 | −151.6 (2) |
C3—C2—C7—C26 | −18.2 (4) | C7—N8—V12—N11 | −161.4 (3) |
C2—C7—N8—C9 | −179.5 (3) | C9—N8—V12—N11 | 9.3 (2) |
C26—C7—N8—C9 | 0.8 (4) | C6—C1—O13—V12 | −136.7 (2) |
C2—C7—N8—V12 | −9.0 (4) | C2—C1—O13—V12 | 45.9 (4) |
C26—C7—N8—V12 | 171.2 (2) | O15—V12—O13—C1 | 50.2 (2) |
C7—N8—C9—C10 | −172.0 (3) | O14—V12—O13—C1 | 163.6 (2) |
V12—N8—C9—C10 | 16.9 (3) | N11—V12—O13—C1 | −92.8 (3) |
N8—C9—C10—N11 | −42.6 (3) | N8—V12—O13—C1 | −54.7 (2) |
N8—C9—C10—C28 | −161.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O14i | 0.90 | 2.08 | 2.942 (4) | 159 |
N11—H11B···O15ii | 0.90 | 2.29 | 3.173 (4) | 168 |
C26—H26B···O14iii | 0.96 | 2.46 | 3.370 (4) | 158 |
Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x, −y+1, z−1/2; (iii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [V(C12H17N2O)O2] |
Mr | 288.22 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 295 |
a, b, c (Å) | 11.1198 (6), 15.7408 (8), 7.6448 (3) |
V (Å3) | 1338.10 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.2 × 0.04 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.941, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11574, 2126, 1387 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.051, 0.83 |
No. of reflections | 2126 |
No. of parameters | 167 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.16 |
Absolute structure | Flack (1983), 849 Friedel pairs |
Absolute structure parameter | 0.23 (2) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O14i | 0.90 | 2.08 | 2.942 (4) | 159 |
N11—H11B···O15ii | 0.90 | 2.29 | 3.173 (4) | 168 |
Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x, −y+1, z−1/2. |
Acknowledgements
This scientific work has been supported by Funds for Science in Years 2007–2009 as a research project (N N204 0355 33 and DS/8210–4–0086–9).
References
Carter-Franklin, J. N., Parrish, J. D., Tchirret-Guth, R. A., Little, R. D. & Butler, A. (2003). J. Am. Chem. Soc. 125, 3688–3689. Web of Science CrossRef PubMed CAS Google Scholar
Eady, R. R. (2003). Coord. Chem. Rev. 237, 23–30. Web of Science CrossRef CAS Google Scholar
Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249–265. Web of Science CrossRef PubMed Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235. CrossRef CAS Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018. Web of Science CSD CrossRef CAS Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568. Web of Science CSD CrossRef CAS Google Scholar
Mendz, G. L. (1991). Arch. Biochem. Biophys. 291, 201–211. CrossRef PubMed CAS Web of Science Google Scholar
Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119–6121. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Parekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. Chem. 40, 494–497. CrossRef CAS Google Scholar
Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425. CrossRef CAS IUCr Journals Web of Science Google Scholar
Rehder, D., Antoni, G., Licini, G. M., Schulzke, C. & Meier, B. (2003). Coord. Chem. Rev. 237, 53–63. Web of Science CSD CrossRef CAS Google Scholar
Rehder, D., Costa Pessoa, J., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem. 7, 384–396. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem. 52, 386–393. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Vanadium(IV) and (V) complexes with Schiff bases are excellent model compounds for some biological enzymes, viz.: haloperoxidases (Carter-Franklin et al., 2003; Rehder et al., 2003), phosphomutases (Mendz, 1991) and nitrogenases (Eady, 2003). Their various pharmocological properties also has been reported, especially as an antidiabetes (Rehder et al., 2002), anticancer (Evangelou, 2002), antifungal and antibacterial (Parekh et al., 2006; Shahzadi et al., 2007) agents.
The crystal structure of (I) consists of monomeric complex molecules (Fig. 1) with a distorted square pyramidal geometry about vanadium with O15 at the apex. By the use of the dihedral angle method and the unit bond lengths, it was estimated that the structure is displaced by 76.1% along the Berry coordinate from the ideal trigonal bipyramidal (0%) toward the ideal square pyramidal (100%) geometry (Holmes, 1984). In contrast to this structure, the similar monomeric complex, but derived from 4,6-dimetoxysalicylaldehyde (Kwiatkowski et al., 2003), reveals a distorted trigonal bipyramidal environment with the degree of the distortion of 41.2% along the Berry coordinate. The vanadium atom is displaced from the mean plane passing through the four basal atoms, N8, N11, O13 and O14, by ca 0.51 (1) Å towards O15. The bond lengths V12—N8 of 2.171 (3) Å, V12—N11 of 2.118 (2) Å, V12—O13 of 1.883 (2) Å, V12—O14 of 1.635 (2) Å, V12—O15 of 1.615 (2) Å and the O=V=O angle of 109.9° are similar to the values in other cis-VO2+ complexes (Mokry & Carrano, 1993; Kwiatkowski et al., 2003; Kwiatkowski et al., 2007). The six-membered chelate ring (V12, O13, C1, C2, C7, N8) is concluded to be an envelope on V12 atom. The ring puckering analysis shows that the five-membered chelate ring defined by V12, N11, C10, C9, N8 atoms adopts a twisted conformation on C10 and N11 atoms, with P = 282.7 (2)° and Tau(M) = 49.9 (2)° for reference bond V12—N8 (Rao et al., 1981).
The crystal structure of the monomeric complex (I) is stabilized by the C—H···O, N—H···O hydrogen bonds and C—H···π interactions. Hydrogen bonds between dioxidovanadium oxygen atoms and nitrogen and carbon atoms of neighbouring molecules result in formation of infinite chains and closed loops, extending in the a direction (Tables 1 and 2, Fig. 2).