organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro-3-fluoro­phen­yl)-2-[(3-phenyl­isoquinolin-1-yl)sulfan­yl]ethanone

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139-Samsun, Turkey
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 5 January 2009; accepted 13 January 2009; online 17 January 2009)

In the title compound, C23H15ClFNOS, the isoquinoline system and the 4-chloro-3-fluoro­phenyl ring are aligned at 80.4 (1)°. The dihedral angle between the isoquinoline system and the pendant (unsubstituted) phenyl ring is 19.91 (1)°.

Related literature

For related structures, see: Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]); Manivel et al. (2009a[Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009a). Acta Cryst. E65, o137-o138.],b[Manivel, P., Hathwar, V. R., Nithya, P., Subashini, R. & Nawaz Khan, F. (2009b). Acta Cryst. E65, o254.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15ClFNOS

  • Mr = 407.87

  • Orthorhombic, P b c a

  • a = 16.9008 (11) Å

  • b = 9.8036 (7) Å

  • c = 23.3226 (16) Å

  • V = 3864.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 290 (2) K

  • 0.24 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.965

  • 27428 measured reflections

  • 3595 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.128

  • S = 1.04

  • 3595 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In compound (I), the S atom also located in the plane. The F atom deviates by 0.014 A from mean plane of phenyl ring containing F and Cl atoms. In this ring F– C and Cl—C bond distances are 1.348 (4) A, 1.727 (3) A, respectively. The orientation of isoquinoline ring system with respect to the another phenyl ring is given by the torsion angles for N1—C2—C10—C15 and C3—C2—C10—C11 are respectively -160.1 (2)°, -163.1 (3)° similarly for C16—S1—C1—N1 and C16—S1—C1—C8 are respectively -0.8 (2)° and 179.56 (19)° (Table 1).

Related literature top

For related structures, see: Hathwar et al. (2008); Manivel et al. (2009a,b).

Experimental top

3-Phenylisoquinoline-1-thiol and 2-bromo-1-(3-fluoro-4-chlorophenyl)ethanone were mixed in the ratio 1:1.05 equivalents with ethanol in a round bottom flask. Then it was heated under nitrogen atmosphere on an oil bath at 323 K. After 2 h, the products were filtered and dissolved in chloroform. Further, it was washed with water, dried and concentrated. The single-crystal for X-ray structue anlaysis was obtained from ether solution by slow evaporation.

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of (I).The dotted lines indicate intermolecular C—H···O hydrogen bonds. All H atoms have been omitted for clarity.
1-(4-Chloro-3-fluorophenyl)-2-[(3-phenylisoquinolin-1-yl)sulfanyl]ethanone top
Crystal data top
C23H15ClFNOSF(000) = 1680
Mr = 407.87Dx = 1.402 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3595 reflections
a = 16.9008 (11) Åθ = 1.8–25.5°
b = 9.8036 (7) ŵ = 0.33 mm1
c = 23.3226 (16) ÅT = 290 K
V = 3864.3 (5) Å3Block, colourless
Z = 80.24 × 0.18 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1820
Tmin = 0.925, Tmax = 0.965k = 1111
27428 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0566P)2 + 1.1665P]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H15ClFNOSV = 3864.3 (5) Å3
Mr = 407.87Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.9008 (11) ŵ = 0.33 mm1
b = 9.8036 (7) ÅT = 290 K
c = 23.3226 (16) Å0.24 × 0.18 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2424 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.965Rint = 0.063
27428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3595 reflectionsΔρmin = 0.19 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07142 (12)0.8183 (2)0.28005 (9)0.0633 (6)
F10.09785 (13)0.8393 (2)0.06905 (9)0.1057 (7)
S10.03138 (4)0.61721 (7)0.37120 (3)0.0495 (2)
Cl10.02952 (8)0.70329 (14)0.00961 (4)0.1221 (5)
N10.12270 (12)0.4853 (2)0.29715 (9)0.0399 (5)
C10.11497 (15)0.5201 (2)0.35092 (11)0.0393 (6)
C20.18572 (14)0.4054 (2)0.28104 (11)0.0405 (6)
C30.24276 (16)0.3684 (3)0.31906 (11)0.0474 (7)
H30.28610.31800.30660.057*
C40.29398 (18)0.3701 (3)0.41884 (13)0.0593 (8)
H40.33840.32050.40790.071*
C50.2845 (2)0.4076 (3)0.47468 (14)0.0688 (9)
H50.32250.38270.50160.083*
C60.2188 (2)0.4828 (3)0.49197 (13)0.0643 (9)
H60.21350.50850.53020.077*
C70.16226 (18)0.5189 (3)0.45299 (12)0.0538 (7)
H70.11800.56760.46500.065*
C80.17027 (16)0.4832 (2)0.39492 (11)0.0422 (6)
C90.23657 (16)0.4063 (3)0.37753 (11)0.0451 (6)
C100.18550 (14)0.3638 (2)0.21970 (11)0.0419 (6)
C110.13897 (17)0.4309 (3)0.18011 (12)0.0515 (7)
H110.10850.50460.19210.062*
C120.13641 (19)0.3920 (3)0.12340 (12)0.0597 (8)
H120.10460.43920.09760.072*
C130.18110 (19)0.2828 (3)0.10499 (13)0.0641 (9)
H130.18050.25690.06660.077*
C140.22641 (19)0.2130 (4)0.14375 (14)0.0715 (10)
H140.25560.13790.13170.086*
C150.22938 (17)0.2524 (3)0.20044 (13)0.0598 (8)
H150.26090.20420.22610.072*
C160.01524 (15)0.6351 (3)0.30300 (11)0.0439 (6)
H16A0.01770.54610.28490.053*
H16B0.06920.66590.30890.053*
C170.02538 (15)0.7327 (2)0.26264 (12)0.0426 (6)
C180.00791 (15)0.7226 (2)0.20013 (12)0.0422 (6)
C190.05916 (17)0.7874 (3)0.16253 (13)0.0520 (7)
H190.10200.83660.17660.062*
C200.0465 (2)0.7788 (3)0.10523 (15)0.0647 (9)
C210.0164 (2)0.7098 (4)0.08298 (14)0.0679 (9)
C220.0680 (2)0.6464 (3)0.11953 (15)0.0714 (9)
H220.11160.60000.10490.086*
C230.05585 (18)0.6510 (3)0.17826 (13)0.0572 (8)
H230.09040.60620.20290.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0674 (14)0.0532 (12)0.0694 (14)0.0142 (11)0.0162 (11)0.0004 (10)
F10.1066 (17)0.1363 (19)0.0742 (14)0.0033 (15)0.0267 (12)0.0272 (13)
S10.0554 (5)0.0517 (4)0.0412 (4)0.0142 (3)0.0010 (3)0.0073 (3)
Cl10.1660 (12)0.1504 (11)0.0500 (6)0.0166 (9)0.0195 (6)0.0006 (6)
N10.0408 (13)0.0394 (12)0.0396 (12)0.0018 (10)0.0016 (10)0.0030 (9)
C10.0454 (16)0.0322 (13)0.0404 (15)0.0012 (11)0.0021 (12)0.0003 (11)
C20.0372 (15)0.0380 (14)0.0462 (15)0.0010 (11)0.0047 (12)0.0020 (12)
C30.0381 (15)0.0473 (15)0.0570 (17)0.0062 (12)0.0002 (14)0.0042 (14)
C40.0579 (19)0.0559 (18)0.064 (2)0.0096 (15)0.0138 (16)0.0034 (16)
C50.081 (2)0.068 (2)0.058 (2)0.0080 (19)0.0261 (18)0.0111 (17)
C60.090 (2)0.0590 (19)0.0443 (17)0.0110 (18)0.0115 (17)0.0026 (14)
C70.070 (2)0.0462 (16)0.0448 (17)0.0078 (15)0.0052 (14)0.0015 (13)
C80.0501 (16)0.0346 (13)0.0419 (15)0.0011 (12)0.0037 (12)0.0025 (11)
C90.0481 (16)0.0368 (14)0.0505 (16)0.0013 (12)0.0068 (13)0.0021 (12)
C100.0368 (15)0.0425 (14)0.0464 (16)0.0034 (12)0.0067 (12)0.0055 (12)
C110.0665 (19)0.0400 (15)0.0479 (17)0.0057 (14)0.0020 (15)0.0024 (13)
C120.077 (2)0.0564 (17)0.0457 (17)0.0053 (16)0.0019 (15)0.0004 (14)
C130.065 (2)0.081 (2)0.0468 (18)0.0032 (18)0.0075 (16)0.0157 (16)
C140.058 (2)0.091 (3)0.065 (2)0.0256 (19)0.0001 (17)0.0299 (19)
C150.0466 (18)0.074 (2)0.0585 (19)0.0217 (16)0.0017 (14)0.0164 (16)
C160.0429 (16)0.0415 (15)0.0472 (16)0.0076 (12)0.0010 (12)0.0031 (12)
C170.0383 (15)0.0353 (14)0.0543 (17)0.0055 (12)0.0039 (13)0.0023 (12)
C180.0410 (15)0.0341 (13)0.0514 (17)0.0041 (12)0.0020 (13)0.0016 (12)
C190.0485 (17)0.0474 (17)0.060 (2)0.0057 (13)0.0024 (14)0.0034 (14)
C200.069 (2)0.069 (2)0.056 (2)0.0130 (18)0.0129 (18)0.0134 (16)
C210.087 (3)0.072 (2)0.0453 (18)0.018 (2)0.0032 (18)0.0037 (16)
C220.081 (2)0.070 (2)0.064 (2)0.0032 (18)0.0258 (19)0.0049 (17)
C230.0612 (19)0.0512 (17)0.059 (2)0.0033 (14)0.0071 (16)0.0041 (14)
Geometric parameters (Å, º) top
O1—C171.215 (3)C10—C151.395 (3)
F1—C201.348 (4)C11—C121.377 (4)
S1—C11.768 (3)C11—H110.9300
S1—C161.784 (3)C12—C131.378 (4)
Cl1—C211.727 (3)C12—H120.9300
N1—C11.306 (3)C13—C141.368 (4)
N1—C21.375 (3)C13—H130.9300
C1—C81.434 (3)C14—C151.378 (4)
C2—C31.359 (3)C14—H140.9300
C2—C101.487 (3)C15—H150.9300
C3—C91.417 (3)C16—C171.508 (4)
C3—H30.9300C16—H16A0.9700
C4—C51.363 (4)C16—H16B0.9700
C4—C91.413 (4)C17—C181.491 (4)
C4—H40.9300C18—C231.383 (4)
C5—C61.392 (4)C18—C191.387 (4)
C5—H50.9300C19—C201.356 (4)
C6—C71.366 (4)C19—H190.9300
C6—H60.9300C20—C211.363 (5)
C7—C81.405 (4)C21—C221.369 (5)
C7—H70.9300C22—C231.386 (4)
C8—C91.410 (3)C22—H220.9300
C10—C111.380 (4)C23—H230.9300
C1—S1—C1699.63 (12)C13—C12—H12120.1
C1—N1—C2119.3 (2)C14—C13—C12119.3 (3)
N1—C1—C8123.8 (2)C14—C13—H13120.3
N1—C1—S1118.51 (19)C12—C13—H13120.3
C8—C1—S1117.71 (19)C13—C14—C15120.9 (3)
C3—C2—N1121.5 (2)C13—C14—H14119.5
C3—C2—C10123.8 (2)C15—C14—H14119.5
N1—C2—C10114.7 (2)C14—C15—C10120.6 (3)
C2—C3—C9120.4 (2)C14—C15—H15119.7
C2—C3—H3119.8C10—C15—H15119.7
C9—C3—H3119.8C17—C16—S1114.70 (19)
C5—C4—C9120.2 (3)C17—C16—H16A108.6
C5—C4—H4119.9S1—C16—H16A108.6
C9—C4—H4119.9C17—C16—H16B108.6
C4—C5—C6120.9 (3)S1—C16—H16B108.6
C4—C5—H5119.6H16A—C16—H16B107.6
C6—C5—H5119.6O1—C17—C18120.0 (2)
C7—C6—C5120.2 (3)O1—C17—C16121.5 (3)
C7—C6—H6119.9C18—C17—C16118.6 (2)
C5—C6—H6119.9C23—C18—C19119.1 (3)
C6—C7—C8120.6 (3)C23—C18—C17123.3 (3)
C6—C7—H7119.7C19—C18—C17117.7 (2)
C8—C7—H7119.7C20—C19—C18119.7 (3)
C7—C8—C9119.2 (2)C20—C19—H19120.1
C7—C8—C1124.3 (2)C18—C19—H19120.1
C9—C8—C1116.5 (2)F1—C20—C19119.2 (3)
C8—C9—C4118.9 (3)F1—C20—C21118.8 (3)
C8—C9—C3118.4 (2)C19—C20—C21122.0 (3)
C4—C9—C3122.7 (3)C20—C21—C22119.0 (3)
C11—C10—C15117.4 (2)C20—C21—Cl1119.7 (3)
C11—C10—C2120.9 (2)C22—C21—Cl1121.2 (3)
C15—C10—C2121.6 (2)C21—C22—C23120.4 (3)
C12—C11—C10121.9 (3)C21—C22—H22119.8
C12—C11—H11119.0C23—C22—H22119.8
C10—C11—H11119.0C18—C23—C22119.8 (3)
C11—C12—C13119.8 (3)C18—C23—H23120.1
C11—C12—H12120.1C22—C23—H23120.1
C2—N1—C1—C82.0 (4)C15—C10—C11—C121.1 (4)
C2—N1—C1—S1177.53 (17)C2—C10—C11—C12178.4 (3)
C16—S1—C1—N10.8 (2)C10—C11—C12—C130.2 (4)
C16—S1—C1—C8179.56 (19)C11—C12—C13—C141.2 (5)
C1—N1—C2—C34.0 (4)C12—C13—C14—C151.6 (5)
C1—N1—C2—C10175.8 (2)C13—C14—C15—C100.6 (5)
N1—C2—C3—C93.1 (4)C11—C10—C15—C140.7 (4)
C10—C2—C3—C9176.7 (2)C2—C10—C15—C14178.0 (3)
C9—C4—C5—C60.5 (5)C1—S1—C16—C1773.20 (19)
C4—C5—C6—C70.7 (5)S1—C16—C17—O119.3 (3)
C5—C6—C7—C81.2 (4)S1—C16—C17—C18160.73 (18)
C6—C7—C8—C91.6 (4)O1—C17—C18—C23164.7 (3)
C6—C7—C8—C1178.2 (3)C16—C17—C18—C2315.2 (4)
N1—C1—C8—C7179.4 (2)O1—C17—C18—C1916.0 (4)
S1—C1—C8—C70.1 (3)C16—C17—C18—C19164.1 (2)
N1—C1—C8—C90.7 (4)C23—C18—C19—C200.6 (4)
S1—C1—C8—C9179.71 (18)C17—C18—C19—C20178.7 (2)
C7—C8—C9—C41.5 (4)C18—C19—C20—F1178.3 (2)
C1—C8—C9—C4178.4 (2)C18—C19—C20—C211.2 (5)
C7—C8—C9—C3178.5 (2)F1—C20—C21—C22179.0 (3)
C1—C8—C9—C31.6 (3)C19—C20—C21—C220.5 (5)
C5—C4—C9—C80.9 (4)F1—C20—C21—Cl10.8 (4)
C5—C4—C9—C3179.1 (3)C19—C20—C21—Cl1179.7 (2)
C2—C3—C9—C80.2 (4)C20—C21—C22—C230.8 (5)
C2—C3—C9—C4179.8 (3)Cl1—C21—C22—C23179.0 (2)
C3—C2—C10—C11163.1 (3)C19—C18—C23—C220.7 (4)
N1—C2—C10—C1117.1 (3)C17—C18—C23—C22180.0 (3)
C3—C2—C10—C1519.7 (4)C21—C22—C23—C181.4 (5)
N1—C2—C10—C15160.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···S10.932.683.076 (3)107
C11—H11···N10.932.472.795 (4)101

Experimental details

Crystal data
Chemical formulaC23H15ClFNOS
Mr407.87
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)16.9008 (11), 9.8036 (7), 23.3226 (16)
V3)3864.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.24 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.925, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
27428, 3595, 2424
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.128, 1.04
No. of reflections3595
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at the IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009a). Acta Cryst. E65, o137–o138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivel, P., Hathwar, V. R., Nithya, P., Subashini, R. & Nawaz Khan, F. (2009b). Acta Cryst. E65, o254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds