metal-organic compounds
Di-μ-chlorido-bis[chlorido(1,4,6-trimethyl-6-nitro-1,4-diazepine)copper(II)]
aDepto. de Química–UFSC, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br
The title neutral copper complex, [Cu2Cl4(C8H17N3O2)2], shows a binuclear center with a Cu—(μ-Cl)2—Cu core, in which each copper ion is coordinated by the N,N,O donor atoms of the tridentate ligand 1,4,6-trimethyl-6-nitro-1,4-diazepine (meaaz-NO2) and three chloride exogenous ligands. Each metal ion is facially coordinated by meaaz-NO2 through N,N,O donor atoms, whereas two bridging and one terminal chloride ions occupy the other face of the highly Jahn–Teller-distorted octahedron. Two N atoms from tertiary amine groups of the meaaz-NO2 ligand and two exogenous Cl atoms with short Cu—N and Cu—Cl distances define the equatorial plane. The coordination around each CuII ion is completed by another Cl atom and an O atom from the NO2 group, in the axial positions. The binuclear complex exhibits a centrosymmetric structure with .
Related literature
For related literature, see: Belousoff et al. (2006); Deal & Burstyn (1996); Fry et al. (2005); Hegg & Burstyn (1998); Peralta et al. (2005); Rodriguez, et al. (1999); Romba et al. (2006). For the synthesis of the meaaz-NO2 ligand see Ge et al. (2006). For related structures, see: Astner et al. (2008); Schwindinger et al. (1980); Steed et al. (2007).
Experimental
Crystal data
|
Data collection: APEX2, BIS and COSMO (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808043390/pk2138sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808043390/pk2138Isup2.hkl
The ligand 6-nitro-1,4,7-trimethyl-1,4-diazepine (meaaz-NO2) was prepared as reported in the literature (Ge et al., 2006). The ligand was obtained with good yeld and was characterized by 1H NMR [δ (p.p.m.) (CDCl3) 400 MHz: 1.46 (s, 3H); 2.36 (s, 6H); 2.48 (m, 2H); 2.56 (m, 2H); 2.66 and 3.36 (AB system, 4H)].
Copper complex was synthesized by adding 187 mg of the ligand meaaz-NO2 (1.0 mmol) to a CH3CN solution containing CuCl2.2H2O (171 mg, 1.0 mmol). The solution was then concentrated under magnetic stirring and was allowed to stand at room temperature for a few days, yielding a small number of dark green crystals which were suitable for the single-crystal X-ray analysis.
H atoms were placed at their idealized positions with distances of 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH2 and CH3, respectively.
Data collection: APEX2, BIS and COSMO (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu2Cl4(C8H17N3O2)2] | F(000) = 660 |
Mr = 643.37 | Dx = 1.658 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6584 reflections |
a = 10.5478 (2) Å | θ = 2.6–29.9° |
b = 10.9251 (2) Å | µ = 2.10 mm−1 |
c = 11.4430 (2) Å | T = 296 K |
β = 102.297 (1)° | Block, dark green |
V = 1288.39 (4) Å3 | 0.31 × 0.14 × 0.09 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2528 independent reflections |
Radiation source: fine-focus sealed tube | 2080 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −13→12 |
Tmin = 0.562, Tmax = 0.833 | k = −13→13 |
25284 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.7796P] where P = (Fo2 + 2Fc2)/3 |
2528 reflections | (Δ/σ)max = 0.001 |
148 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cu2Cl4(C8H17N3O2)2] | V = 1288.39 (4) Å3 |
Mr = 643.37 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.5478 (2) Å | µ = 2.10 mm−1 |
b = 10.9251 (2) Å | T = 296 K |
c = 11.4430 (2) Å | 0.31 × 0.14 × 0.09 mm |
β = 102.297 (1)° |
Bruker APEXII CCD area-detector diffractometer | 2528 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2080 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.833 | Rint = 0.036 |
25284 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.76 e Å−3 |
2528 reflections | Δρmin = −0.37 e Å−3 |
148 parameters |
Experimental. Absorption correction: SADABS (Bruker, 2006) was used to scale the data and to perform the multi-scan semi-empirical absorption correction. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.41672 (3) | 0.13540 (3) | 1.03616 (3) | 0.03146 (12) | |
Cl1 | 0.45369 (7) | 0.11762 (7) | 1.23819 (6) | 0.0467 (2) | |
Cl2 | 0.62792 (6) | 0.10672 (6) | 1.02889 (7) | 0.04311 (19) | |
N1 | 0.4017 (2) | 0.4025 (2) | 1.0951 (2) | 0.0379 (5) | |
C1 | 0.2738 (2) | 0.3853 (2) | 0.9997 (2) | 0.0328 (6) | |
C2 | 0.3105 (2) | 0.3551 (2) | 0.8818 (2) | 0.0323 (5) | |
H2A | 0.2344 | 0.3665 | 0.8182 | 0.039* | |
H2B | 0.3752 | 0.4138 | 0.8689 | 0.039* | |
N3 | 0.3623 (2) | 0.22930 (18) | 0.87072 (18) | 0.0305 (5) | |
C4 | 0.2543 (3) | 0.1488 (2) | 0.8105 (2) | 0.0385 (6) | |
H4A | 0.2887 | 0.0705 | 0.7919 | 0.046* | |
H4B | 0.2099 | 0.1862 | 0.7361 | 0.046* | |
C5 | 0.1594 (3) | 0.1294 (2) | 0.8915 (2) | 0.0384 (6) | |
H5A | 0.0839 | 0.1809 | 0.8647 | 0.046* | |
H5B | 0.1307 | 0.0448 | 0.8860 | 0.046* | |
N6 | 0.2196 (2) | 0.15908 (19) | 1.01947 (18) | 0.0318 (5) | |
C7 | 0.1930 (3) | 0.2888 (3) | 1.0467 (2) | 0.0392 (6) | |
H7A | 0.2071 | 0.2978 | 1.1329 | 0.047* | |
H7B | 0.1021 | 0.3056 | 1.0139 | 0.047* | |
C8 | 0.2051 (3) | 0.5099 (3) | 0.9930 (3) | 0.0437 (7) | |
H8A | 0.2607 | 0.5721 | 0.9723 | 0.065* | |
H8B | 0.1857 | 0.5286 | 1.0693 | 0.065* | |
H8C | 0.1260 | 0.5068 | 0.9333 | 0.065* | |
O2 | 0.5045 (2) | 0.38177 (18) | 1.0687 (2) | 0.0487 (5) | |
O1 | 0.3919 (3) | 0.4391 (3) | 1.1928 (2) | 0.0739 (8) | |
C11 | 0.4596 (3) | 0.2357 (3) | 0.7947 (3) | 0.0458 (7) | |
H11A | 0.4905 | 0.1548 | 0.7834 | 0.069* | |
H11B | 0.5310 | 0.2860 | 0.8330 | 0.069* | |
H11C | 0.4204 | 0.2703 | 0.7185 | 0.069* | |
C12 | 0.1585 (3) | 0.0810 (3) | 1.0982 (3) | 0.0480 (7) | |
H12A | 0.1948 | 0.1003 | 1.1803 | 0.072* | |
H12B | 0.1745 | −0.0036 | 1.0837 | 0.072* | |
H12C | 0.0667 | 0.0957 | 1.0815 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02805 (18) | 0.03469 (19) | 0.02830 (19) | 0.00043 (12) | −0.00153 (12) | 0.00140 (13) |
Cl1 | 0.0457 (4) | 0.0598 (5) | 0.0286 (3) | −0.0011 (3) | −0.0057 (3) | 0.0030 (3) |
Cl2 | 0.0305 (3) | 0.0414 (4) | 0.0548 (4) | 0.0014 (3) | 0.0034 (3) | −0.0005 (3) |
N1 | 0.0431 (14) | 0.0303 (12) | 0.0341 (13) | 0.0022 (10) | −0.0052 (10) | −0.0050 (10) |
C1 | 0.0286 (13) | 0.0343 (14) | 0.0307 (13) | 0.0012 (10) | −0.0043 (10) | −0.0038 (10) |
C2 | 0.0350 (13) | 0.0290 (13) | 0.0291 (13) | −0.0018 (10) | −0.0014 (10) | 0.0010 (10) |
N3 | 0.0340 (11) | 0.0295 (11) | 0.0264 (10) | −0.0021 (8) | 0.0026 (8) | −0.0009 (9) |
C4 | 0.0474 (16) | 0.0340 (15) | 0.0280 (13) | −0.0064 (11) | −0.0059 (11) | −0.0032 (11) |
C5 | 0.0362 (14) | 0.0385 (15) | 0.0339 (14) | −0.0074 (11) | −0.0071 (11) | −0.0005 (11) |
N6 | 0.0291 (11) | 0.0348 (12) | 0.0290 (11) | −0.0026 (9) | 0.0004 (9) | 0.0036 (9) |
C7 | 0.0367 (14) | 0.0420 (16) | 0.0389 (15) | 0.0005 (11) | 0.0080 (12) | −0.0009 (12) |
C8 | 0.0431 (16) | 0.0391 (15) | 0.0450 (16) | 0.0096 (12) | 0.0008 (13) | −0.0041 (13) |
O2 | 0.0340 (11) | 0.0482 (12) | 0.0561 (13) | −0.0006 (8) | −0.0078 (9) | −0.0021 (10) |
O1 | 0.0730 (17) | 0.095 (2) | 0.0429 (13) | 0.0211 (14) | −0.0124 (11) | −0.0325 (13) |
C11 | 0.0544 (18) | 0.0485 (17) | 0.0381 (15) | 0.0034 (14) | 0.0176 (13) | 0.0033 (13) |
C12 | 0.0418 (16) | 0.0530 (18) | 0.0499 (18) | −0.0078 (13) | 0.0114 (13) | 0.0137 (15) |
Cu1—N6 | 2.064 (2) | C4—H4A | 0.9700 |
Cu1—N3 | 2.122 (2) | C4—H4B | 0.9700 |
Cu1—Cl2 | 2.2686 (7) | C5—N6 | 1.502 (3) |
Cu1—Cl1 | 2.2694 (7) | C5—H5A | 0.9700 |
Cu1—Cl2i | 2.7611 (8) | C5—H5B | 0.9700 |
Cu1—O2 | 2.845 (2) | N6—C12 | 1.484 (3) |
Cl2—Cu1i | 2.7611 (8) | N6—C7 | 1.491 (3) |
N1—O2 | 1.207 (3) | C7—H7A | 0.9700 |
N1—O1 | 1.212 (3) | C7—H7B | 0.9700 |
N1—C1 | 1.556 (3) | C8—H8A | 0.9600 |
C1—C2 | 1.517 (4) | C8—H8B | 0.9600 |
C1—C7 | 1.524 (4) | C8—H8C | 0.9600 |
C1—C8 | 1.536 (4) | C11—H11A | 0.9600 |
C2—N3 | 1.495 (3) | C11—H11B | 0.9600 |
C2—H2A | 0.9700 | C11—H11C | 0.9600 |
C2—H2B | 0.9700 | C12—H12A | 0.9600 |
N3—C11 | 1.482 (3) | C12—H12B | 0.9600 |
N3—C4 | 1.487 (3) | C12—H12C | 0.9600 |
C4—C5 | 1.517 (4) | ||
N6—Cu1—N3 | 77.35 (8) | N3—C4—H4B | 109.7 |
N6—Cu1—Cl2 | 172.72 (6) | C5—C4—H4B | 109.7 |
N3—Cu1—Cl2 | 96.62 (6) | H4A—C4—H4B | 108.2 |
N6—Cu1—Cl1 | 93.22 (6) | N6—C5—C4 | 111.6 (2) |
N3—Cu1—Cl1 | 154.87 (6) | N6—C5—H5A | 109.3 |
Cl2—Cu1—Cl1 | 93.93 (3) | C4—C5—H5A | 109.3 |
N6—Cu1—Cl2i | 89.11 (6) | N6—C5—H5B | 109.3 |
N3—Cu1—Cl2i | 102.97 (6) | C4—C5—H5B | 109.3 |
Cl2—Cu1—Cl2i | 88.29 (2) | H5A—C5—H5B | 108.0 |
Cl1—Cu1—Cl2i | 100.08 (3) | C12—N6—C7 | 107.1 (2) |
N6—Cu1—O2 | 100.77 (7) | C12—N6—C5 | 108.6 (2) |
N3—Cu1—O2 | 71.22 (7) | C7—N6—C5 | 110.5 (2) |
Cl2—Cu1—O2 | 80.84 (5) | C12—N6—Cu1 | 115.53 (16) |
Cl1—Cu1—O2 | 88.12 (5) | C7—N6—Cu1 | 109.30 (15) |
Cl2i—Cu1—O2 | 166.84 (5) | C5—N6—Cu1 | 105.75 (16) |
Cu1—Cl2—Cu1i | 91.71 (2) | N6—C7—C1 | 116.1 (2) |
O2—N1—O1 | 123.4 (2) | N6—C7—H7A | 108.3 |
O2—N1—C1 | 119.5 (2) | C1—C7—H7A | 108.3 |
O1—N1—C1 | 117.1 (2) | N6—C7—H7B | 108.3 |
C2—C1—C7 | 115.6 (2) | C1—C7—H7B | 108.3 |
C2—C1—C8 | 110.8 (2) | H7A—C7—H7B | 107.4 |
C7—C1—C8 | 109.7 (2) | C1—C8—H8A | 109.5 |
C2—C1—N1 | 107.6 (2) | C1—C8—H8B | 109.5 |
C7—C1—N1 | 107.6 (2) | H8A—C8—H8B | 109.5 |
C8—C1—N1 | 104.9 (2) | C1—C8—H8C | 109.5 |
N3—C2—C1 | 116.3 (2) | H8A—C8—H8C | 109.5 |
N3—C2—H2A | 108.2 | H8B—C8—H8C | 109.5 |
C1—C2—H2A | 108.2 | N1—O2—Cu1 | 85.76 (15) |
N3—C2—H2B | 108.2 | N3—C11—H11A | 109.5 |
C1—C2—H2B | 108.2 | N3—C11—H11B | 109.5 |
H2A—C2—H2B | 107.4 | H11A—C11—H11B | 109.5 |
C11—N3—C4 | 108.3 (2) | N3—C11—H11C | 109.5 |
C11—N3—C2 | 108.6 (2) | H11A—C11—H11C | 109.5 |
C4—N3—C2 | 109.0 (2) | H11B—C11—H11C | 109.5 |
C11—N3—Cu1 | 117.18 (17) | N6—C12—H12A | 109.5 |
C4—N3—Cu1 | 99.36 (15) | N6—C12—H12B | 109.5 |
C2—N3—Cu1 | 113.78 (15) | H12A—C12—H12B | 109.5 |
N3—C4—C5 | 109.8 (2) | N6—C12—H12C | 109.5 |
N3—C4—H4A | 109.7 | H12A—C12—H12C | 109.5 |
C5—C4—H4A | 109.7 | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl4(C8H17N3O2)2] |
Mr | 643.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.5478 (2), 10.9251 (2), 11.4430 (2) |
β (°) | 102.297 (1) |
V (Å3) | 1288.39 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.31 × 0.14 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.562, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25284, 2528, 2080 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.083, 1.07 |
No. of reflections | 2528 |
No. of parameters | 148 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.37 |
Computer programs: APEX2, BIS and COSMO (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support. The authors also thank to Dr Manfredo Hörner and Dr Robert A. Burrow at Universidade Federal de Santa Maria for the crystallographic facilities.
References
Astner, J., Weitzer, M., Foxon, S. P., Schindler, S., Heinemann, F. W., Mukherjee, J., Gupta, R., Mahadevan, V. & Mukherjee, R. (2008). Inorg. Chim. Acta, 361, 279–292. Web of Science CSD CrossRef CAS Google Scholar
Belousoff, M. J., Duriska, M. B., Graham, B., Batten, S. R., Moubaraki, B., Murray, K. S. & Spiccia, L. (2006). Inorg. Chem. 45, 3746–3755. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2006). APEX2, COSMO, BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deal, K. A. & Burstyn, J. N. (1996). Inorg. Chem. 35, 2792–2798. CrossRef CAS Web of Science Google Scholar
Fry, F. H., Fischmann, A. J., Belousoff, M. J., Spiccia, L. & Brgger, J. (2005). Inorg. Chem. 44, 941–950. Web of Science CrossRef PubMed CAS Google Scholar
Ge, S., Bambirra, S., Meetsma, A. & Hessen, B. (2006). Chem. Commun. pp. 3320–3322. Web of Science CSD CrossRef Google Scholar
Hegg, E. L. & Burstyn, J. N. (1998). Coord. Chem. Rev. 173, 133–165. Web of Science CrossRef CAS Google Scholar
Peralta, R. A., Neves, A., Bortoluzzi, A. J., Casellato, A., Anjos, A., Greatti, A., Xavier, F. R. & Szpoganicz, B. (2005). Inorg. Chem. 44, 7690–7692. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rodriguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328–2334. Web of Science CSD CrossRef CAS Google Scholar
Romba, J., Kuppert, D., Morgenstern, B., Neis, C., Steinhauser, S., Weyhermüller, T. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 314–328. Web of Science CSD CrossRef Google Scholar
Schwindinger, W. F., Fawcett, T. G., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 1379–1381. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steed, J. W., Goeta, A. E., Lipkowski, J., Swierczynski, D., Panteleonc, V. & Handa, S. (2007). Chem. Commun. pp. 813–815. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tridentate ligands that are able to force facial geometry, such as 1,4,7-tacn (1,4,7-triazacyclononane), daza (1,4-diazepan-6-amine) (Romba, et al., 2006), tach (cis,cis-1,3,5-triaminocyclohexane) (Hegg & Burstyn, 1998), play an important role in the stabilization of a great number of structural motifs in coordination compounds and in biological systems (Peralta et al., 2005). Copper complexes with this kind of ligand have been reported over the past few years with a view to the study of the hydrolysis of phosphate esters, proteins and DNA (Deal & Burstyn, 1996; Fry et al., 2005). Indeed such copper(II) complexes exhibit high catalytic reactivity in the hydrolysis of DNA model diesters as bis(4-nitrophenyl)phosphate with rate constants of ≈ 10 -4 s-1 (Belousoff et al., 2006). In this context we report herein the synthesis and X-ray analysis of a new dinuclear copper complex with the tridentate ligand meaaz-NO2.
This neutral copper complex exhibits a centrosymmetric structure (Fig. 1) with a highly distorted octahedral environment around the copper center. Each metal ion is facially coordinated by meaaz-NO2 through N2O donors atoms, whereas two bridged and one terminal coordinated chlorines occupy the other face of the distorted octahedron. Two amine nitrogen atoms (N3 and N6) of the ligand and two exogenous chlorines (Cl1, Cl2) lie in the equatorial plane. The coordination sphere of Cu1 is completed by another chlorine (Cl2') and an oxygen atom (O2) from the NO2 group, in the axial positions. In the equatorial plane, the Cu—N and Cu—Cl bond lengths are Cu1—N6 2.064 (2) Å, Cu1—N3 2.122 (2) Å, Cu1—Cl2 2.2686 (7) Å and Cu1—Cl1 2.2694 (7) Å), respectively. The longer bond lengths Cu1—Cl2' (2.7611 (8) Å) and Cu1—O2 (2.845 (2) Å) are associated with the two apical positions, as expected for a (4 + 2) distorted geometry, as is common for CuII. The Cu—N and the Cu—Cl bond lengths in the equatorial plane are comparable to those found for other copper complexes [Cu(tacn)Cl2] (Cu—N2 2.063 (4) Å, Cu—N3 2.038 (4) Å, CU—Cl1 2.268 (1) Å and Cu—Cl2 2.312 (1) Å) (Schwindinger, et al., 1980), [Cu2(µ-Cl)2(Me-bpa)2(ClO4)2] (Me-bpa = N-methyl-bis(2-pyridylmethyl)amine) (Cu1—N36 1.983 (2) Å, Cu1—N10 2.036 (2) Å, Cu1—N26 1.989 (2) Å and Cu1—Cl1 2.2587 (6) Å) (Astner et al., 2008) and [Cu(me3tacn)Cl2] (Cu1—N1 2.100 (2) Å, Cu1—N2 2.111 (2) Å, Cu1—Cl2 2.2558 (9) Å and Cu1—Cl1 2.3050 (8) Å) (Steed et al., 2007). The seven-membered chelate ring of the meaaz-NO2 ligand restricts the N—Cu—N angle to 77.35 (8)°, which is about 6° smaller than the respective angles formed by nine-membered ring in the Cu-tacn complexes.
As described in Rodriguez, et al. (1999), there are three kinds of configurations for copper complex containing the Cu-(µ-Cl)2—Cu core: Type I, in which two square pyramids share one base-to-apex edge with the two bases nearly perpendicular to one another; Type II, square pyramids sharing one base-to-apex edge but with parallel basal planes and Type III, square pyramids sharing a basal edge with coplanar basal planes. The configuration of the Cu centers reported here are Type II given that the axial positions of one copper(II) center is directed toward the top and the same axis of the adjacent center is in the anti position. Although the Cu centers in the complex are hexacoordinate, it can be considered as type II, because the sixth coordination bond is very long (Cu—O2 = 2.845 (2)Å).
The packing is mainly governed by weak C—H···O and C—H···Cl interactions with average D···A distances of 2.99 Å and 3.74 Å, respectively. In addition, the packing analysis reveals that the molecules are accomodated in layers parallel to the (001) plane and are stacked along crystallographic a axis (Fig. 2).