organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-N-[(E)-2-methyl-3-phenyl­allyl­­idene]aniline

aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 13 January 2009; accepted 15 January 2009; online 23 January 2009)

The title Schiff base compound, C16H14ClN, adopts E configurations with respect to both the C=C and C=N bonds. The dihedral angle between the two aromatic rings is 53.27 (4)°, while the plane through the C=C—C=N system is inclined at 9.06 (8)° to the benzene ring and 44.92 (5)° to the chloro­benzene ring. In the crystal structure, weak C—H⋯Cl and C—H⋯N hydrogen bonds stack the mol­ecules down the a axis.

Related literature

For background to the use of Schiff bases as ligands see: Khalaji et al. (2008a[Khalaji, A. D., Amirnasr, M. & Harrison, W. T. A. (2008a). Anal. Sci. 24, x89-x90.],b[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. 24, x137-x138.]); and for their bio-activity, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Xiong et al. (2008[Xiong, Y.-Z., Chen, F.-E., Balzarini, J., Clercq, E. D. & Pannecouque, C. (2008). Eur. J. Med. Chem. 43, 1230-1236.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Sirisha, N. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]); Khalaji et al. (2008c[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008c). Anal. Sci. 24, x139-x140.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN

  • Mr = 255.73

  • Orthorhombic, P 21 21 21

  • a = 7.2486 (10) Å

  • b = 11.6637 (17) Å

  • c = 15.598 (2) Å

  • V = 1318.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 89 (2) K

  • 0.36 × 0.24 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.992

  • 21077 measured reflections

  • 4077 independent reflections

  • 3517 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 4077 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1742 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.95 2.67 3.524 (2) 150
C13—H13⋯Cl1ii 0.95 2.92 3.7311 (17) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Schiff-bases are well known chelating ligands in coordination chemistry (Khalaji et al., 2008a,b), and exhibit a wide range of biological activities (Karthikeyan et al., 2006) including anti-HIV activity (Xiong et al., 2008; Sriram et al., 2006). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008c), we report here the structure of the title compound, C16H14NCl, (I), Fig 1.

The title Schiff-base compound, C16H14NCl, adopts E configurations with respect to both the C2=C4 and C1=N1 bonds. Bond lengths in the molecule are normal (Allen, et al., 1987) and similar to those found in related compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji et al., 2008c). The dihedral angle between the two aromatic rings is 53.27 (4)° while the plane through the C2=C4–C1=N1 system is inclined at 9.06 (8)° to the C5···C10 ring and 44.92 (5)° to the C11···C16 ring.

In the crystal structure, weak C13—H13···Cl1 and C7—H7···N1 hydrogen bonds stack the molecules down the a axis.

Related literature top

For background to the use of Schiff bases as ligands see: Khalaji et al. (2008a,b); and for their bio-activity, see: Karthikeyan et al. (2006); Xiong et al. (2008); Sriram et al. (2006). For related structures, see: Khalaji et al. (2007); Khalaji & Harrison (2008); Khalaji et al. (2008c). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound was prepared in 76% yield from 4-chloroaniline and α-methylcinnamaldehyde as reported elsewhere (Khalaji et al. 2007) and recrystallized from methanol.

Refinement top

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(E)-4-Chloro-N-[(E)-2-methyl-3-phenylallylidene]aniline top
Crystal data top
C16H14ClNF(000) = 536
Mr = 255.73Dx = 1.288 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5396 reflections
a = 7.2486 (10) Åθ = 2.6–28.8°
b = 11.6637 (17) ŵ = 0.27 mm1
c = 15.598 (2) ÅT = 89 K
V = 1318.7 (3) Å3Rectangular plate, pale yellow
Z = 40.36 × 0.24 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 30.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.841, Tmax = 0.992k = 1616
21077 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4077 reflectionsΔρmax = 0.30 e Å3
164 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1742 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C16H14ClNV = 1318.7 (3) Å3
Mr = 255.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2486 (10) ŵ = 0.27 mm1
b = 11.6637 (17) ÅT = 89 K
c = 15.598 (2) Å0.36 × 0.24 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3517 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.992Rint = 0.058
21077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.30 e Å3
S = 1.06Δρmin = 0.36 e Å3
4077 reflectionsAbsolute structure: Flack (1983), 1742 Friedel pairs
164 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5152 (2)0.52967 (12)0.68870 (9)0.0202 (3)
C10.4972 (2)0.61272 (13)0.63497 (9)0.0183 (3)
H10.45500.68480.65530.022*
C20.5394 (2)0.60026 (13)0.54384 (9)0.0172 (3)
C30.6040 (3)0.48397 (13)0.51348 (10)0.0224 (3)
H3A0.53030.46010.46390.034*
H3B0.58920.42800.55980.034*
H3C0.73430.48840.49700.034*
C40.5161 (2)0.69557 (13)0.49535 (10)0.0178 (3)
H40.47250.76020.52640.021*
C50.5458 (2)0.71712 (13)0.40389 (10)0.0166 (3)
C60.6332 (3)0.64156 (14)0.34605 (10)0.0227 (3)
H60.67710.56950.36590.027*
C70.6560 (2)0.67119 (14)0.26031 (10)0.0228 (3)
H70.71510.61920.22230.027*
C80.5931 (2)0.77606 (14)0.22974 (10)0.0228 (3)
H80.60720.79530.17090.027*
C90.5089 (3)0.85283 (15)0.28615 (11)0.0243 (4)
H90.46720.92520.26600.029*
C100.4861 (2)0.82324 (14)0.37165 (10)0.0205 (3)
H100.42860.87620.40940.025*
C110.4819 (2)0.55276 (13)0.77639 (10)0.0182 (3)
C120.5526 (2)0.64996 (13)0.81773 (10)0.0203 (3)
H120.62330.70400.78620.024*
C130.5200 (2)0.66792 (13)0.90454 (10)0.0207 (3)
H130.56710.73420.93230.025*
C140.4183 (2)0.58807 (13)0.94995 (10)0.0193 (3)
Cl10.38085 (6)0.60910 (4)1.05938 (2)0.02595 (11)
C150.3494 (2)0.48964 (13)0.91081 (11)0.0206 (3)
H150.28000.43540.94280.025*
C160.3841 (2)0.47222 (13)0.82400 (10)0.0199 (3)
H160.34040.40450.79690.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0204 (7)0.0212 (6)0.0190 (6)0.0000 (5)0.0007 (5)0.0002 (5)
C10.0174 (7)0.0186 (6)0.0189 (7)0.0011 (6)0.0001 (6)0.0018 (6)
C20.0162 (7)0.0171 (6)0.0182 (7)0.0014 (6)0.0009 (5)0.0021 (6)
C30.0278 (9)0.0173 (6)0.0222 (8)0.0029 (7)0.0032 (7)0.0004 (6)
C40.0186 (8)0.0163 (7)0.0185 (7)0.0000 (6)0.0011 (6)0.0038 (5)
C50.0145 (7)0.0161 (6)0.0191 (7)0.0025 (6)0.0003 (6)0.0018 (5)
C60.0291 (9)0.0164 (6)0.0225 (8)0.0000 (7)0.0035 (7)0.0014 (5)
C70.0280 (9)0.0206 (7)0.0199 (7)0.0031 (7)0.0053 (6)0.0036 (6)
C80.0244 (9)0.0264 (7)0.0175 (7)0.0045 (7)0.0010 (6)0.0008 (6)
C90.0257 (9)0.0238 (7)0.0233 (8)0.0035 (7)0.0006 (7)0.0054 (6)
C100.0204 (8)0.0198 (7)0.0213 (7)0.0028 (6)0.0019 (6)0.0004 (6)
C110.0174 (7)0.0190 (7)0.0183 (7)0.0034 (6)0.0007 (6)0.0014 (6)
C120.0209 (8)0.0183 (6)0.0218 (7)0.0003 (6)0.0028 (6)0.0042 (6)
C130.0233 (8)0.0174 (7)0.0214 (7)0.0008 (6)0.0039 (6)0.0012 (6)
C140.0181 (7)0.0217 (7)0.0180 (7)0.0051 (6)0.0004 (6)0.0021 (6)
Cl10.0302 (2)0.02978 (19)0.01791 (17)0.00604 (18)0.00123 (15)0.00069 (15)
C150.0197 (8)0.0196 (7)0.0225 (7)0.0009 (6)0.0016 (6)0.0030 (6)
C160.0199 (8)0.0172 (6)0.0228 (7)0.0000 (6)0.0005 (6)0.0006 (6)
Geometric parameters (Å, º) top
N1—C11.287 (2)C8—C91.396 (2)
N1—C111.415 (2)C8—H80.9500
C1—C21.4612 (19)C9—C101.387 (2)
C1—H10.9500C9—H90.9500
C2—C41.355 (2)C10—H100.9500
C2—C31.511 (2)C11—C161.392 (2)
C3—H3A0.9800C11—C121.401 (2)
C3—H3B0.9800C12—C131.390 (2)
C3—H3C0.9800C12—H120.9500
C4—C51.464 (2)C13—C141.383 (2)
C4—H40.9500C13—H130.9500
C5—C101.404 (2)C14—C151.393 (2)
C5—C61.412 (2)C14—Cl11.7456 (16)
C6—C71.391 (2)C15—C161.392 (2)
C6—H60.9500C15—H150.9500
C7—C81.390 (2)C16—H160.9500
C7—H70.9500
C1—N1—C11117.96 (14)C7—C8—H8120.3
N1—C1—C2122.50 (14)C9—C8—H8120.3
N1—C1—H1118.8C10—C9—C8119.89 (15)
C2—C1—H1118.8C10—C9—H9120.1
C4—C2—C1115.80 (14)C8—C9—H9120.1
C4—C2—C3126.88 (13)C9—C10—C5121.79 (15)
C1—C2—C3117.32 (13)C9—C10—H10119.1
C2—C3—H3A109.5C5—C10—H10119.1
C2—C3—H3B109.5C16—C11—C12119.14 (15)
H3A—C3—H3B109.5C16—C11—N1118.32 (14)
C2—C3—H3C109.5C12—C11—N1122.44 (15)
H3A—C3—H3C109.5C13—C12—C11120.52 (15)
H3B—C3—H3C109.5C13—C12—H12119.7
C2—C4—C5131.77 (14)C11—C12—H12119.7
C2—C4—H4114.1C14—C13—C12119.20 (15)
C5—C4—H4114.1C14—C13—H13120.4
C10—C5—C6117.38 (14)C12—C13—H13120.4
C10—C5—C4117.05 (14)C13—C14—C15121.45 (15)
C6—C5—C4125.55 (14)C13—C14—Cl1119.28 (12)
C7—C6—C5120.84 (15)C15—C14—Cl1119.25 (12)
C7—C6—H6119.6C16—C15—C14118.82 (15)
C5—C6—H6119.6C16—C15—H15120.6
C8—C7—C6120.63 (15)C14—C15—H15120.6
C8—C7—H7119.7C11—C16—C15120.83 (14)
C6—C7—H7119.7C11—C16—H16119.6
C7—C8—C9119.46 (15)C15—C16—H16119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.673.524 (2)150
C13—H13···Cl1ii0.952.923.7311 (17)144
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H14ClN
Mr255.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)89
a, b, c (Å)7.2486 (10), 11.6637 (17), 15.598 (2)
V3)1318.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.24 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.841, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
21077, 4077, 3517
Rint0.058
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.06
No. of reflections4077
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36
Absolute structureFlack (1983), 1742 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.673.524 (2)150.3
C13—H13···Cl1ii0.952.923.7311 (17)144.0
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+3/2, z+2.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhalaji, A. D., Amirnasr, M. & Harrison, W. T. A. (2008a). Anal. Sci. 24, x89–x90.  Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008b). Anal. Sci. 24, x137–x138.  CAS Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008c). Anal. Sci. 24, x139–x140.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Sirisha, N. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXiong, Y.-Z., Chen, F.-E., Balzarini, J., Clercq, E. D. & Pannecouque, C. (2008). Eur. J. Med. Chem. 43, 1230–1236.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds