organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­phen­yl)-3-(2,6-di­chloro­benzo­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and cDepartment of Chemistry, Islamia University of Bahawalpur, Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 1 December 2008; accepted 20 December 2008; online 8 January 2009)

The structure of the title compound, C14H9Cl3N2OS, is composed of discrete mol­ecules with bond lengths and angles quite typical for thio­urea compounds of this class. The plane containing the thio­carbonyl and carbonyl groups subtends dihedral angles of 48.19 (3) and 87.51 (3)° with the planes formed by the 3-chloro and 2,6-dichloro­phenyl rings, respectively; the dihedral angle between the two benzene ring planes is 45.32 (3)°. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation and the mol­ecules form inter­molecular N—H⋯S and N—H⋯O hydrogen bonds, generating a sheet along the a axis.

Related literature

For related structures, see: Khawar Rauf et al., (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o3859-o3861.],b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o4296-o4298.]; 2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o2665-o2666.]). For a description of the Cambridge structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl3N2OS

  • Mr = 359.64

  • Monoclinic, P 21 /c

  • a = 10.6589 (5) Å

  • b = 11.2114 (5) Å

  • c = 13.2919 (6) Å

  • β = 99.942 (3)°

  • V = 1564.55 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 (2) K

  • 0.47 × 0.47 × 0.45 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.729, Tmax = 0.739

  • 39690 measured reflections

  • 5066 independent reflections

  • 4674 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.06

  • 5066 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.82 (2) 2.07 (2) 2.7190 (13) 136.0 (18)
N2—H2⋯O1i 0.82 (2) 2.37 (2) 3.0749 (14) 145.5 (18)
N1—H1⋯S1ii 0.86 (2) 2.47 (2) 3.2974 (10) 163.6 (18)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON and SHELXL97.

Supporting information


Comment top

The background to this study has been set out in our previous work on the structural chemistry of N,N'-disubstituted thioureas (Khawar Rauf et al., 2006a, 2007). Herein, as a continuation of these studies, the structure of the title compound, (I), is described.

In the structure of the title compound (Fig. 1), bond lengths and bond angles can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002) and some related structures (Khawar Rauf et al., 2006b). The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bonds. The thiocarbonyl and carbonyl groups are almost coplanar. The molecule features an intramolecular N—H···O hydrogen bond in the crystal structure. The molecules lying about inversions centers associate via N—H···S intermolecular hydrogen bonds to form dimers on one side and a similar association via N—H···O hydrogen bonding on the other side thus result in a sheet of molecules of (I) along the a<ι>-axis (Table 1; Fig. 2).

Related literature top

For related structures, see: Khawar Rauf et al., (2006a,b; 2007). For a description of the Cambridge structural Database, see: Allen (2002).

Experimental top

Freshly prepared and steam distillated 2,6-dichlorobenzoyl isothiocyanate (2.32 g, 10 mmol) was stirred in acetone (30 ml) for 20 minutes. Neat 3-chloroaniline (1.27 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified (pH 4) water (approx. 300 ml) and stirred well. The solid product was separated, washed with deionized water and purified by recrystallization from methanol/1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall yield of 85%.

Refinement top

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit cell of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-(3-Chlorophenyl)-3-(2,6-dichlorobenzoyl)thiourea top
Crystal data top
C14H9Cl3N2OSF(000) = 728
Mr = 359.64Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 37695 reflections
a = 10.6589 (5) Åθ = 3.7–31.2°
b = 11.2114 (5) ŵ = 0.72 mm1
c = 13.2919 (6) ÅT = 173 K
β = 99.942 (3)°Block, colourless
V = 1564.55 (12) Å30.47 × 0.47 × 0.45 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
5066 independent reflections
Radiation source: fine-focus sealed tube4674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 31.3°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1515
Tmin = 0.729, Tmax = 0.739k = 1616
39690 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.9365P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5066 reflectionsΔρmax = 0.65 e Å3
199 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0111 (12)
Crystal data top
C14H9Cl3N2OSV = 1564.55 (12) Å3
Mr = 359.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6589 (5) ŵ = 0.72 mm1
b = 11.2114 (5) ÅT = 173 K
c = 13.2919 (6) Å0.47 × 0.47 × 0.45 mm
β = 99.942 (3)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
5066 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
4674 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.739Rint = 0.046
39690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.65 e Å3
5066 reflectionsΔρmin = 0.66 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09625 (3)0.60027 (3)0.62517 (2)0.02474 (9)
Cl10.19574 (4)0.61905 (4)0.23352 (3)0.03999 (11)
Cl20.22323 (4)0.18815 (4)0.41908 (3)0.03969 (11)
Cl30.33122 (7)0.61484 (7)0.99688 (3)0.0735 (2)
C10.27158 (11)0.45474 (11)0.41547 (8)0.0182 (2)
O10.38737 (8)0.46303 (10)0.43625 (7)0.0285 (2)
N10.19003 (9)0.49493 (10)0.47738 (8)0.01915 (19)
H10.1105 (19)0.4841 (18)0.4559 (15)0.030 (5)*
C20.21866 (10)0.55197 (10)0.57210 (8)0.0174 (2)
N20.34238 (9)0.56439 (10)0.61243 (8)0.01918 (19)
H20.394 (2)0.5442 (19)0.5770 (15)0.032 (5)*
C110.20320 (10)0.39859 (11)0.31773 (8)0.0179 (2)
C120.16489 (13)0.46736 (13)0.23029 (10)0.0251 (2)
C130.09985 (17)0.41613 (18)0.14040 (11)0.0394 (4)
H130.07450.46390.08140.047*
C140.07264 (17)0.29526 (19)0.13789 (12)0.0421 (4)
H140.02750.26060.07700.051*
C150.11043 (15)0.22420 (15)0.22299 (12)0.0337 (3)
H150.09230.14120.22080.040*
C160.17558 (12)0.27683 (12)0.31200 (10)0.0232 (2)
C210.39003 (11)0.62132 (11)0.70818 (9)0.0195 (2)
C220.34464 (15)0.58955 (14)0.79662 (10)0.0289 (3)
H220.28220.52880.79530.035*
C230.39279 (16)0.64880 (16)0.88702 (10)0.0340 (3)
C240.48645 (15)0.73570 (15)0.89168 (11)0.0332 (3)
H240.51800.77520.95410.040*
C250.53305 (14)0.76367 (15)0.80313 (11)0.0318 (3)
H250.59840.82180.80530.038*
C260.48479 (12)0.70721 (13)0.71106 (10)0.0246 (2)
H260.51640.72730.65070.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01676 (13)0.03383 (17)0.02412 (15)0.00159 (11)0.00495 (10)0.01452 (12)
Cl10.0485 (2)0.02974 (18)0.0415 (2)0.00112 (15)0.00718 (16)0.00931 (14)
Cl20.0507 (2)0.02793 (17)0.0402 (2)0.00109 (15)0.00724 (16)0.00754 (14)
Cl30.1095 (5)0.0945 (5)0.02015 (18)0.0585 (4)0.0216 (2)0.0165 (2)
C10.0160 (4)0.0228 (5)0.0156 (4)0.0010 (4)0.0018 (4)0.0044 (4)
O10.0144 (4)0.0461 (6)0.0246 (4)0.0004 (4)0.0023 (3)0.0134 (4)
N10.0133 (4)0.0275 (5)0.0163 (4)0.0008 (3)0.0016 (3)0.0081 (4)
C20.0171 (5)0.0197 (5)0.0152 (4)0.0009 (4)0.0018 (4)0.0037 (4)
N20.0153 (4)0.0266 (5)0.0152 (4)0.0008 (4)0.0015 (3)0.0061 (4)
C110.0160 (4)0.0231 (5)0.0147 (4)0.0007 (4)0.0030 (4)0.0051 (4)
C120.0247 (6)0.0317 (6)0.0185 (5)0.0009 (5)0.0023 (4)0.0000 (4)
C130.0408 (8)0.0571 (10)0.0173 (6)0.0037 (7)0.0037 (5)0.0014 (6)
C140.0391 (8)0.0612 (11)0.0243 (6)0.0127 (8)0.0002 (6)0.0189 (7)
C150.0315 (7)0.0355 (7)0.0350 (7)0.0098 (6)0.0080 (5)0.0185 (6)
C160.0225 (5)0.0246 (6)0.0236 (5)0.0020 (4)0.0070 (4)0.0059 (4)
C210.0185 (5)0.0235 (5)0.0151 (4)0.0003 (4)0.0005 (4)0.0049 (4)
C220.0358 (7)0.0330 (7)0.0168 (5)0.0123 (5)0.0015 (5)0.0041 (5)
C230.0446 (8)0.0414 (8)0.0156 (5)0.0123 (7)0.0041 (5)0.0064 (5)
C240.0341 (7)0.0410 (8)0.0222 (6)0.0079 (6)0.0016 (5)0.0123 (5)
C250.0265 (6)0.0382 (8)0.0300 (6)0.0108 (5)0.0027 (5)0.0129 (6)
C260.0206 (5)0.0305 (6)0.0229 (5)0.0044 (5)0.0038 (4)0.0076 (5)
Geometric parameters (Å, º) top
S1—C21.6766 (12)C13—H130.9500
Cl1—C121.7313 (15)C14—C151.385 (3)
Cl2—C161.7386 (14)C14—H140.9500
Cl3—C231.7433 (15)C15—C161.3951 (18)
C1—O11.2209 (14)C15—H150.9500
C1—N11.3721 (14)C21—C261.3912 (18)
C1—C111.5128 (15)C21—C221.3925 (18)
N1—C21.3980 (14)C22—C231.3912 (18)
N1—H10.86 (2)C22—H220.9500
C2—N21.3423 (14)C23—C241.389 (2)
N2—C211.4360 (14)C24—C251.390 (2)
N2—H20.82 (2)C24—H240.9500
C11—C121.3957 (17)C25—C261.3947 (17)
C11—C161.3957 (17)C25—H250.9500
C12—C131.3971 (19)C26—H260.9500
C13—C141.385 (3)
O1—C1—N1124.03 (10)C14—C15—C16118.77 (14)
O1—C1—C11122.98 (10)C14—C15—H15120.6
N1—C1—C11112.99 (9)C16—C15—H15120.6
C1—N1—C2128.90 (10)C15—C16—C11121.96 (13)
C1—N1—H1116.6 (13)C15—C16—Cl2118.99 (11)
C2—N1—H1114.5 (13)C11—C16—Cl2119.05 (9)
N2—C2—N1116.98 (10)C26—C21—C22120.68 (11)
N2—C2—S1125.50 (9)C26—C21—N2118.43 (11)
N1—C2—S1117.52 (8)C22—C21—N2120.88 (11)
C2—N2—C21124.95 (10)C23—C22—C21118.48 (13)
C2—N2—H2117.2 (14)C23—C22—H22120.8
C21—N2—H2117.5 (14)C21—C22—H22120.8
C12—C11—C16117.79 (11)C24—C23—C22121.91 (13)
C12—C11—C1120.90 (11)C24—C23—Cl3119.18 (10)
C16—C11—C1121.31 (11)C22—C23—Cl3118.89 (12)
C11—C12—C13121.04 (14)C23—C24—C25118.67 (12)
C11—C12—Cl1119.67 (10)C23—C24—H24120.7
C13—C12—Cl1119.28 (12)C25—C24—H24120.7
C14—C13—C12119.59 (15)C24—C25—C26120.60 (13)
C14—C13—H13120.2C24—C25—H25119.7
C12—C13—H13120.2C26—C25—H25119.7
C13—C14—C15120.85 (13)C21—C26—C25119.62 (12)
C13—C14—H14119.6C21—C26—H26120.2
C15—C14—H14119.6C25—C26—H26120.2
O1—C1—N1—C20.6 (2)C14—C15—C16—C110.2 (2)
C11—C1—N1—C2179.35 (12)C14—C15—C16—Cl2179.98 (12)
C1—N1—C2—N24.11 (19)C12—C11—C16—C150.86 (18)
C1—N1—C2—S1175.27 (11)C1—C11—C16—C15178.74 (12)
N1—C2—N2—C21179.40 (11)C12—C11—C16—Cl2179.39 (9)
S1—C2—N2—C210.07 (18)C1—C11—C16—Cl21.01 (16)
O1—C1—C11—C1290.46 (16)C2—N2—C21—C26130.55 (14)
N1—C1—C11—C1289.48 (14)C2—N2—C21—C2250.86 (18)
O1—C1—C11—C1689.95 (16)C26—C21—C22—C232.4 (2)
N1—C1—C11—C1690.11 (14)N2—C21—C22—C23179.07 (14)
C16—C11—C12—C130.68 (19)C21—C22—C23—C241.7 (3)
C1—C11—C12—C13178.93 (13)C21—C22—C23—Cl3176.96 (13)
C16—C11—C12—Cl1179.53 (10)C22—C23—C24—C250.1 (3)
C1—C11—C12—Cl10.07 (16)Cl3—C23—C24—C25178.76 (14)
C11—C12—C13—C140.1 (2)C23—C24—C25—C261.3 (3)
Cl1—C12—C13—C14178.73 (14)C22—C21—C26—C251.2 (2)
C12—C13—C14—C150.8 (3)N2—C21—C26—C25179.82 (13)
C13—C14—C15—C160.6 (2)C24—C25—C26—C210.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.82 (2)2.07 (2)2.7190 (13)136.0 (18)
N2—H2···O1i0.82 (2)2.37 (2)3.0749 (14)145.5 (18)
N1—H1···S1ii0.86 (2)2.47 (2)3.2974 (10)163.6 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Cl3N2OS
Mr359.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.6589 (5), 11.2114 (5), 13.2919 (6)
β (°) 99.942 (3)
V3)1564.55 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.47 × 0.47 × 0.45
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.729, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
39690, 5066, 4674
Rint0.046
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.06
No. of reflections5066
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.66

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 2008), PLATON (Spek, 2003) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.82 (2)2.07 (2)2.7190 (13)136.0 (18)
N2—H2···O1i0.82 (2)2.37 (2)3.0749 (14)145.5 (18)
N1—H1···S1ii0.86 (2)2.47 (2)3.2974 (10)163.6 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

MKR is grateful to the HEC-Pakistan for financial support for the PhD program under scholarship No. [ILC–0363104].

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o3859–o3861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o4296–o4298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o2665–o2666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds