organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,4S,5S,6R)-6-(4-Bromo­phen­yl)-5-nitro­bi­cyclo­[2.2.2]octan-2-one

aState Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xiaaibao1983@163.com

(Received 9 December 2008; accepted 11 January 2009; online 17 January 2009)

The title compound, C14H14BrNO3, contains a bicyclic ring system with four chiral centers. The absolute structure was established by the Flack method.

Related literature

For the asymmetric Diels-Alder reaction, which in principle allows the formation of four contiguous asymmetric centers, see: Anrendt et al. (2000[Anrendt, K. A., Borths, C. J. & MacMillan, D. W. C. (2000). J. Am. Chem. Soc. 122, 4243-4244.]); Northrup & MacMillan (2002[Northrup, A. B. & MacMillan, D. W. C. (2002). J. Am. Chem. Soc. 124, 2548-2549.]); Xu et al. (2007[Xu, D. Q., Luo, S. P., Wang, Y. F., Xia, A. B., Yue, H. D., Wang, L. P. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393-4395.]); Xu et al. (2008[Xu, D. Q., Wang, Y. F., Luo, S. P., Zhang, S., Zhong, A. G., Chen, H. & Xu, Z. Y. (2008). Adv. Synth. Catal. pp. 2610-2616.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrNO3

  • Mr = 324.17

  • Orthorhombic, P 21 21 21

  • a = 6.4675 (8) Å

  • b = 10.0007 (13) Å

  • c = 20.108 (3) Å

  • V = 1300.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 293 (2) K

  • 0.38 × 0.33 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University Of Göttingen, Germany.]) Tmin = 0.758, Tmax = 1.000 (expected range = 0.325–0.428)

  • 7669 measured reflections

  • 2823 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 0.90

  • 2823 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1161 Friedel pairs

  • Flack parameter: 0.024 (12)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been growing interest in the study of asymmetric Diels-Alder reaction because it allows in principle the formation of four contiguous asymmetric centers (Anrendt et al., 2000; Northrup & MacMillan, 2002; Xu et al., 2007, 2008). Consequently, we have synthesized a series of Diels-Alder products in our laboratory and the crystal structure and absolute configuration of one of these, the title compound, (I), is reported in this article.

In the title compound (Fig. 1), the nitryl and the 4-bromophenyl groups lie on different sides of the plane defined by C3/C4/C5 atoms with O2—N1—C4—C5 and N1—C4—C5—C9 torsion angles of 141.4 (4) and 92.5 (5)°, respectively. The C5—H5 bond and 4-bromophenyl group are almost coplanar with H5—C5—C9—C10 torsion angle of -2.3°. The structure is devoid of any classical hydrogen bonding and the molecules of (I) are separated by normal van der Waal's forces (Fig. 2).

Related literature top

For the asymmetric Diels-Alder reaction, which in principle allows the formation of four contiguous asymmetric

centers, see: Anrendt et al. (2000); Northrup & MacMillan (2002); Xu et al. (2007); Xu et al. (2008).

Experimental top

A THF (1.0 ml) solution of trans-nitrostyrene (0.75 mmol) and cyclohex-2-enone (1.0 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.15 mmol) as amine catalyst and benzoic acid (0.15 mmol) as additive at room temperature was subjected to vigorous stirring. After completion of the reaction, the mixture was washed with water (appoximately 300 ml) and extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: petroleum ether-ethoxyethane). Single crystals were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were placed in calculated position with C—H = 0.98, 0.97 and 0.93 Å for methine, methylene and aryl H-atoms. All H atoms were included in the final cycles of refinement in riding mode, with Uiso(H) = 1.2Ueq of the carrier atoms. An absolute structure was established using 1226 Friedel pairs and has been presented in this article.

Computing details top

Data collection: SMART (Bruker, 2001; cell refinement: SAINT (Bruker, 2000); data reduction: SANIT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atomic labeling scheme; displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound.
(1S,4S,5S,6R)-6-(4-Bromophenyl)-5-nitrobicyclo[2.2.2]octan-2-one top
Crystal data top
C14H14BrNO3F(000) = 656
Mr = 324.17Dx = 1.656 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2565 reflections
a = 6.4675 (8) Åθ = 4.6–48.7°
b = 10.0007 (13) ŵ = 3.16 mm1
c = 20.108 (3) ÅT = 293 K
V = 1300.6 (3) Å3Prismatic, colorless
Z = 40.38 × 0.33 × 0.27 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2823 independent reflections
Radiation source: fine-focus sealed tube2201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.758, Tmax = 1.000k = 1212
7669 measured reflectionsl = 2518
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.010
S = 0.90Δρmax = 0.63 e Å3
2823 reflectionsΔρmin = 0.53 e Å3
173 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0251 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1161 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.024 (12)
Crystal data top
C14H14BrNO3V = 1300.6 (3) Å3
Mr = 324.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4675 (8) ŵ = 3.16 mm1
b = 10.0007 (13) ÅT = 293 K
c = 20.108 (3) Å0.38 × 0.33 × 0.27 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2823 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2201 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 1.000Rint = 0.057
7669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.63 e Å3
S = 0.90Δρmin = 0.53 e Å3
2823 reflectionsAbsolute structure: Flack (1983), 1161 Friedel pairs
173 parametersAbsolute structure parameter: 0.024 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.60615 (7)0.37916 (4)0.992203 (17)0.05507 (17)
N10.1712 (5)0.1860 (3)0.66087 (18)0.0450 (8)
O10.8682 (4)0.4856 (3)0.64840 (13)0.0589 (8)
O20.1115 (4)0.1257 (3)0.61231 (14)0.0583 (7)
O30.0748 (5)0.1934 (4)0.71214 (16)0.0764 (10)
C10.7048 (6)0.4361 (4)0.63535 (17)0.0390 (9)
C20.6837 (6)0.3111 (4)0.5941 (2)0.0446 (10)
H2A0.76020.23890.61480.054*
H2B0.74150.32640.55020.054*
C30.4587 (5)0.2721 (4)0.58773 (18)0.0381 (9)
H30.44570.18830.56280.046*
C40.3809 (5)0.2536 (3)0.65847 (16)0.0321 (7)
H40.47970.19640.68210.038*
C50.3716 (5)0.3892 (3)0.69495 (14)0.0306 (7)
H50.22730.41900.69350.037*
C60.4991 (6)0.4916 (4)0.65427 (17)0.0353 (8)
H60.51580.57490.67930.042*
C70.3820 (6)0.5176 (3)0.58930 (16)0.0394 (8)
H7A0.46340.57550.56080.047*
H7B0.25230.56230.59890.047*
C80.3387 (5)0.3837 (4)0.55301 (16)0.0432 (9)
H8A0.19180.36420.55410.052*
H8B0.38150.39020.50690.052*
C90.4318 (4)0.3813 (4)0.76760 (14)0.0316 (7)
C100.2904 (6)0.4189 (3)0.81598 (18)0.0405 (9)
H100.15900.44670.80330.049*
C110.3406 (6)0.4160 (4)0.88210 (17)0.0454 (10)
H110.24290.43910.91400.054*
C120.5348 (5)0.3790 (4)0.90080 (15)0.0384 (8)
C130.6804 (6)0.3425 (3)0.85488 (17)0.0374 (9)
H130.81230.31690.86810.045*
C140.6269 (5)0.3446 (3)0.78835 (16)0.0365 (8)
H140.72520.32070.75670.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0759 (3)0.0602 (3)0.0292 (2)0.0056 (2)0.00768 (18)0.00532 (18)
N10.049 (2)0.0307 (16)0.055 (2)0.0033 (14)0.0048 (17)0.0069 (15)
O10.0375 (17)0.081 (2)0.0584 (18)0.0188 (17)0.0023 (14)0.0023 (15)
O20.0513 (15)0.0495 (16)0.0741 (18)0.0076 (18)0.0139 (15)0.0171 (16)
O30.076 (2)0.090 (2)0.062 (2)0.040 (2)0.0159 (18)0.0028 (18)
C10.038 (2)0.048 (2)0.031 (2)0.0038 (18)0.0005 (16)0.0104 (16)
C20.041 (2)0.049 (2)0.044 (2)0.0109 (18)0.0129 (17)0.0059 (18)
C30.049 (2)0.033 (2)0.0330 (19)0.0027 (17)0.0010 (15)0.0093 (15)
C40.0306 (17)0.0311 (18)0.0344 (17)0.0006 (17)0.0064 (16)0.0025 (13)
C50.0308 (16)0.0275 (16)0.0335 (16)0.0018 (18)0.0013 (14)0.0029 (15)
C60.047 (2)0.0310 (19)0.0283 (19)0.0028 (18)0.0020 (15)0.0039 (15)
C70.043 (2)0.0356 (19)0.0392 (19)0.0000 (18)0.0011 (19)0.0051 (15)
C80.060 (2)0.0377 (19)0.0321 (17)0.002 (2)0.0035 (15)0.0038 (17)
C90.0344 (18)0.0287 (16)0.0317 (16)0.0055 (18)0.0025 (12)0.0006 (15)
C100.0364 (18)0.047 (2)0.038 (2)0.0073 (17)0.0027 (16)0.0044 (16)
C110.052 (3)0.050 (3)0.034 (2)0.0054 (18)0.0104 (17)0.0127 (16)
C120.053 (2)0.0354 (19)0.0268 (16)0.0065 (19)0.0000 (14)0.0052 (18)
C130.0367 (18)0.035 (2)0.041 (2)0.0027 (15)0.0031 (15)0.0042 (15)
C140.0351 (19)0.042 (2)0.0323 (17)0.0020 (16)0.0073 (16)0.0009 (14)
Geometric parameters (Å, º) top
Br—C121.895 (3)C6—C71.532 (5)
N1—O31.207 (4)C6—H60.9800
N1—O21.211 (4)C7—C81.550 (5)
N1—C41.516 (4)C7—H7A0.9700
O1—C11.196 (4)C7—H7B0.9700
C1—C61.491 (5)C8—H8A0.9700
C1—C21.506 (5)C8—H8B0.9700
C2—C31.512 (5)C9—C141.379 (5)
C2—H2A0.9700C9—C101.387 (4)
C2—H2B0.9700C10—C111.369 (5)
C3—C41.520 (5)C10—H100.9300
C3—C81.529 (5)C11—C121.362 (5)
C3—H30.9800C11—H110.9300
C4—C51.543 (4)C12—C131.368 (5)
C4—H40.9800C13—C141.382 (5)
C5—C91.514 (4)C13—H130.9300
C5—C61.549 (5)C14—H140.9300
C5—H50.9800
O3—N1—O2123.7 (3)C1—C6—H6110.4
O3—N1—C4117.5 (3)C7—C6—H6110.4
O2—N1—C4118.8 (3)C5—C6—H6110.4
O1—C1—C6125.3 (3)C6—C7—C8110.1 (3)
O1—C1—C2123.0 (4)C6—C7—H7A109.6
C6—C1—C2111.6 (3)C8—C7—H7A109.6
C1—C2—C3110.4 (3)C6—C7—H7B109.6
C1—C2—H2A109.6C8—C7—H7B109.6
C3—C2—H2A109.6H7A—C7—H7B108.1
C1—C2—H2B109.6C3—C8—C7108.9 (3)
C3—C2—H2B109.6C3—C8—H8A109.9
H2A—C2—H2B108.1C7—C8—H8A109.9
C2—C3—C4105.7 (3)C3—C8—H8B109.9
C2—C3—C8109.8 (3)C7—C8—H8B109.9
C4—C3—C8110.4 (3)H8A—C8—H8B108.3
C2—C3—H3110.3C14—C9—C10117.6 (3)
C4—C3—H3110.3C14—C9—C5122.8 (3)
C8—C3—H3110.3C10—C9—C5119.6 (3)
N1—C4—C3112.4 (3)C11—C10—C9121.3 (3)
N1—C4—C5110.0 (3)C11—C10—H10119.4
C3—C4—C5110.5 (3)C9—C10—H10119.4
N1—C4—H4107.9C12—C11—C10119.5 (3)
C3—C4—H4107.9C12—C11—H11120.3
C5—C4—H4107.9C10—C11—H11120.3
C9—C5—C4113.7 (3)C11—C12—C13121.4 (3)
C9—C5—C6114.1 (3)C11—C12—Br119.5 (3)
C4—C5—C6108.0 (3)C13—C12—Br119.2 (3)
C9—C5—H5106.9C12—C13—C14118.5 (3)
C4—C5—H5106.9C12—C13—H13120.7
C6—C5—H5106.9C14—C13—H13120.7
C1—C6—C7106.7 (3)C9—C14—C13121.7 (3)
C1—C6—C5111.3 (3)C9—C14—H14119.1
C7—C6—C5107.4 (3)C13—C14—H14119.1
O1—C1—C2—C3178.7 (4)C9—C5—C6—C7163.8 (3)
C6—C1—C2—C34.0 (4)C4—C5—C6—C768.7 (3)
C1—C2—C3—C458.0 (4)C1—C6—C7—C865.1 (4)
C1—C2—C3—C861.1 (4)C5—C6—C7—C854.4 (4)
O3—N1—C4—C3163.6 (3)C2—C3—C8—C752.1 (4)
O2—N1—C4—C317.8 (4)C4—C3—C8—C764.1 (4)
O3—N1—C4—C540.0 (4)C6—C7—C8—C39.6 (4)
O2—N1—C4—C5141.4 (3)C4—C5—C9—C1463.5 (4)
C2—C3—C4—N1167.8 (3)C6—C5—C9—C1461.0 (4)
C8—C3—C4—N173.5 (3)C4—C5—C9—C10120.1 (3)
C2—C3—C4—C568.9 (3)C6—C5—C9—C10115.4 (3)
C8—C3—C4—C549.8 (4)C14—C9—C10—C111.9 (5)
N1—C4—C5—C992.5 (3)C5—C9—C10—C11178.5 (3)
C3—C4—C5—C9142.8 (3)C9—C10—C11—C121.8 (6)
N1—C4—C5—C6139.8 (3)C10—C11—C12—C131.0 (6)
C3—C4—C5—C615.1 (4)C10—C11—C12—Br178.5 (3)
O1—C1—C6—C7119.8 (4)C11—C12—C13—C140.4 (6)
C2—C1—C6—C757.4 (4)Br—C12—C13—C14179.1 (3)
O1—C1—C6—C5123.4 (4)C10—C9—C14—C131.2 (5)
C2—C1—C6—C559.5 (4)C5—C9—C14—C13177.7 (3)
C9—C5—C6—C179.8 (3)C12—C13—C14—C90.5 (5)
C4—C5—C6—C147.7 (4)

Experimental details

Crystal data
Chemical formulaC14H14BrNO3
Mr324.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4675 (8), 10.0007 (13), 20.108 (3)
V3)1300.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.38 × 0.33 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7669, 2823, 2201
Rint0.057
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 0.90
No. of reflections2823
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.53
Absolute structureFlack (1983), 1161 Friedel pairs
Absolute structure parameter0.024 (12)

Computer programs: SMART (Bruker, 2001, SAINT (Bruker, 2000), SANIT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We acknowledge the help of Professor Jie Sun of Shanghai Institute of Organic Chemistry.

References

First citationAnrendt, K. A., Borths, C. J. & MacMillan, D. W. C. (2000). J. Am. Chem. Soc. 122, 4243–4244.  Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorthrup, A. B. & MacMillan, D. W. C. (2002). J. Am. Chem. Soc. 124, 2548–2549.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University Of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D. Q., Luo, S. P., Wang, Y. F., Xia, A. B., Yue, H. D., Wang, L. P. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393–4395.  Web of Science CSD CrossRef Google Scholar
First citationXu, D. Q., Wang, Y. F., Luo, S. P., Zhang, S., Zhong, A. G., Chen, H. & Xu, Z. Y. (2008). Adv. Synth. Catal. pp. 2610–2616.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds