organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-6-methyl­anilinium 4-methyl­benzene­sulfonate

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 9 January 2009; accepted 18 January 2009; online 23 January 2009)

The title compound, C9H14N+·C7H7SO3, contains a 2-ethyl-6-methyl­anilinium cation and a 4-methyl­benzene­sulfonic anion. The cations are anchored between the anions through N—H⋯O hydrogen bonds. Electrostatic and van der Waals inter­actions, as well as hydrogen bonds, maintain the structural cohesion.

Related literature

For related structures, see: Benali-Cherif et al. (2007[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.]); Benslimane et al. (2007[Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682-o3683.]); Elmali et al. (2001[Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485-486.]); Fábry et al. (2001[Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058-o1060.], 2002[Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.]); Khemiri et al. (2008[Khemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526.]); Muthamizhchelvan et al. (2005[Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153-o1155.]); Smirani et al. (2008[Smirani, W., Amri, O. & Rzaigui, M. (2008). Acta Cryst. E64, o2463.]); Smirani & Rzaigui (2009[Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·C7H7O3S

  • Mr = 307.40

  • Monoclinic, P 21 /n

  • a = 15.2514 (9) Å

  • b = 6.1889 (4) Å

  • c = 16.9242 (10) Å

  • β = 102.850 (1)°

  • V = 1557.46 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 (2) K

  • 0.45 × 0.34 × 0.27 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.944

  • 7882 measured reflections

  • 3354 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.08

  • 3354 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.91 1.88 2.7727 (18) 168
N1—H1B⋯O3ii 0.91 1.89 2.7800 (19) 166
N1—H1A⋯O2iii 0.91 1.95 2.7917 (18) 153
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, the proton of the sulfonic group of sulfonic acid has been transferred to the N atom of the 2-ethyl-6-methylaniline molecule, leading to the formation of the molecular complex, (I). In this article we present the crystal structure of the title compound. The removal of the sulfonic acid H atom leads to a shortening of the C10—S1 bond length, showing a partial double-bond character. This behaviour is similar to that observed in many picrate salts (Muthamizhchelvan et al. 2005); it is attributed to the loss of the hydroxyl proton, leading to the conversion of the neutral to an anionic state of the molecule.

In the structure (Fig. 1), intermolecular hydrogen bonds are observed, with the N atom of the cation acting as donors. The orientation of the anion and cation facilitates the formation of the expected strong N—H···O hydrogen bonds between amino atom N1 and the sulfonic O atoms; N1 hydrogen bonds to two sulfonic O atoms of adjacent molecules (Fig. 2 and Table 1). These hydrogen bonds are effective in the stabilization of the structure. The crystal structures of several related compounds have been published, e.g. Muthamizhchelvan et al. (2008); Benslimane et al. (2007); Smirani & Rzaigui (2009); Fábry et al. (2001, 2002); Khemiri et al. (2008); Benali-Cherif et al. (2007); Elmali et al. (2001).

Related literature top

For related structures, see: Benali-Cherif et al. (2007); Benslimane et al. (2007); Elmali et al. (2001); Fábry et al. (2001, 2002); Khemiri et al. (2008); Muthamizhchelvan et al. (2005, 2008); Smirani et al. (2008); Smirani & Rzaigui (2009).

Experimental top

Added 2-ethyl-6-methylaniline (1.35 g) into a solution of 4-methylbenzenesulfonic acid (1.72 g) and ethanol (10 ml). After 10 min precipitate were formed which were filtered and dried, giving the desired product. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The methyl H atom were positioned geometrically (C—H = 0.98 Å) and torsion angles refined to fit the electron density [Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed at calculated positions (methylene C—H = 0.95 Å and aromatic C—H = 0.95 Å) and included in the refinement in a riding mode with [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing diagram of (I) showing intermolecular hydrogen bonds; H atoms have been omitted for clarity.
2-Ethyl-6-methylanilinium 4-methylbenzenesulfonate top
Crystal data top
C9H14N+·C7H7O3SF(000) = 656
Mr = 307.40Dx = 1.311 Mg m3
Monoclinic, P21/nMelting point: 428 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.2514 (9) ÅCell parameters from 3656 reflections
b = 6.1889 (4) Åθ = 2.5–27.0°
c = 16.9242 (10) ŵ = 0.22 mm1
β = 102.850 (1)°T = 173 K
V = 1557.46 (16) Å3Block, colourless
Z = 40.45 × 0.34 × 0.27 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3354 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1619
Tmin = 0.904, Tmax = 0.944k = 77
7882 measured reflectionsl = 2115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.2665P]
where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max = 0.003
194 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H14N+·C7H7O3SV = 1557.46 (16) Å3
Mr = 307.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.2514 (9) ŵ = 0.22 mm1
b = 6.1889 (4) ÅT = 173 K
c = 16.9242 (10) Å0.45 × 0.34 × 0.27 mm
β = 102.850 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3354 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2555 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.944Rint = 0.023
7882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
3354 reflectionsΔρmin = 0.34 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90482 (3)0.20760 (7)0.10019 (2)0.02108 (14)
C10.78421 (10)0.5823 (3)0.90053 (9)0.0194 (3)
C20.80908 (11)0.4025 (3)0.86141 (10)0.0221 (4)
C30.74104 (12)0.2913 (3)0.80842 (10)0.0268 (4)
H30.75570.16870.78020.032*
C40.65245 (12)0.3572 (3)0.79640 (11)0.0299 (4)
H40.60680.27910.76030.036*
C50.62989 (12)0.5364 (3)0.83675 (11)0.0275 (4)
H50.56870.57990.82790.033*
C60.69564 (11)0.6543 (3)0.89020 (10)0.0214 (4)
C70.90521 (12)0.3284 (3)0.87383 (11)0.0290 (4)
H7A0.94090.44050.85470.044*
H7B0.90770.19490.84330.044*
H7C0.92970.30170.93160.044*
C80.67261 (11)0.8507 (3)0.93471 (11)0.0267 (4)
H8A0.70640.97590.92040.032*
H8B0.69370.82560.99360.032*
C90.57363 (13)0.9096 (4)0.91767 (15)0.0467 (6)
H9A0.55250.94290.86000.070*
H9B0.56531.03610.95000.070*
H9C0.53920.78760.93200.070*
C100.88515 (10)0.1172 (3)0.19401 (10)0.0206 (3)
C110.90431 (11)0.2524 (3)0.26121 (10)0.0246 (4)
H110.92580.39480.25640.029*
C120.89200 (12)0.1787 (3)0.33539 (11)0.0281 (4)
H120.90530.27160.38120.034*
C130.86041 (11)0.0297 (3)0.34369 (11)0.0266 (4)
C140.84062 (12)0.1613 (3)0.27551 (12)0.0302 (4)
H140.81800.30280.27990.036*
C150.85323 (12)0.0899 (3)0.20085 (11)0.0283 (4)
H150.84010.18250.15500.034*
C160.84628 (14)0.1093 (4)0.42440 (12)0.0380 (5)
H16A0.89660.06240.46770.057*
H16B0.84300.26750.42380.057*
H16C0.79000.04970.43400.057*
N10.85616 (9)0.6956 (2)0.95856 (8)0.0200 (3)
H1A0.83490.82420.97250.030*
H1B0.90360.71950.93520.030*
H1C0.87430.61291.00370.030*
O10.88551 (8)0.43864 (19)0.09615 (7)0.0257 (3)
O20.84407 (8)0.0861 (2)0.03804 (7)0.0307 (3)
O30.99931 (8)0.1642 (2)0.10318 (8)0.0311 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0223 (2)0.0194 (2)0.0217 (2)0.00109 (16)0.00531 (16)0.00141 (17)
C10.0208 (8)0.0203 (8)0.0165 (8)0.0022 (6)0.0031 (6)0.0025 (6)
C20.0273 (9)0.0191 (8)0.0200 (8)0.0006 (7)0.0055 (7)0.0029 (7)
C30.0354 (10)0.0221 (9)0.0236 (9)0.0033 (7)0.0078 (7)0.0031 (7)
C40.0294 (10)0.0329 (10)0.0253 (9)0.0110 (8)0.0019 (7)0.0032 (8)
C50.0217 (9)0.0322 (10)0.0276 (9)0.0028 (7)0.0037 (7)0.0022 (8)
C60.0226 (8)0.0227 (9)0.0191 (8)0.0006 (7)0.0051 (6)0.0040 (7)
C70.0310 (10)0.0255 (10)0.0307 (10)0.0039 (7)0.0072 (8)0.0050 (8)
C80.0208 (9)0.0275 (9)0.0313 (10)0.0002 (7)0.0047 (7)0.0035 (8)
C90.0288 (11)0.0464 (13)0.0616 (15)0.0094 (10)0.0029 (10)0.0170 (11)
C100.0187 (8)0.0204 (8)0.0232 (8)0.0015 (6)0.0055 (6)0.0007 (7)
C110.0241 (9)0.0231 (9)0.0267 (9)0.0039 (7)0.0062 (7)0.0028 (7)
C120.0276 (9)0.0316 (10)0.0252 (9)0.0024 (8)0.0060 (7)0.0048 (8)
C130.0203 (9)0.0315 (10)0.0294 (9)0.0036 (7)0.0086 (7)0.0040 (8)
C140.0331 (10)0.0208 (9)0.0390 (11)0.0013 (7)0.0132 (8)0.0027 (8)
C150.0328 (10)0.0224 (9)0.0312 (10)0.0029 (7)0.0102 (8)0.0051 (8)
C160.0379 (11)0.0462 (12)0.0331 (11)0.0019 (9)0.0148 (9)0.0071 (9)
N10.0186 (7)0.0212 (7)0.0197 (7)0.0017 (6)0.0031 (5)0.0007 (6)
O10.0323 (7)0.0203 (6)0.0238 (6)0.0022 (5)0.0050 (5)0.0008 (5)
O20.0375 (7)0.0285 (7)0.0248 (7)0.0043 (6)0.0044 (5)0.0072 (5)
O30.0250 (7)0.0335 (8)0.0374 (7)0.0061 (5)0.0125 (5)0.0071 (6)
Geometric parameters (Å, º) top
S1—O21.4482 (12)C8—H8B0.9900
S1—O31.4557 (13)C9—H9A0.9800
S1—O11.4584 (12)C9—H9B0.9800
S1—C101.7709 (17)C9—H9C0.9800
C1—C21.390 (2)C10—C151.385 (2)
C1—C61.396 (2)C10—C111.390 (2)
C1—N11.477 (2)C11—C121.387 (2)
C2—C31.393 (2)C11—H110.9500
C2—C71.505 (2)C12—C131.395 (2)
C3—C41.382 (3)C12—H120.9500
C3—H30.9500C13—C141.389 (3)
C4—C51.386 (3)C13—C161.512 (2)
C4—H40.9500C14—C151.392 (3)
C5—C61.397 (2)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C81.512 (2)C16—H16A0.9800
C7—H7A0.9800C16—H16B0.9800
C7—H7B0.9800C16—H16C0.9800
C7—H7C0.9800N1—H1A0.9100
C8—C91.517 (2)N1—H1B0.9100
C8—H8A0.9900N1—H1C0.9100
O2—S1—O3113.45 (8)C8—C9—H9A109.5
O2—S1—O1112.66 (7)C8—C9—H9B109.5
O3—S1—O1111.75 (7)H9A—C9—H9B109.5
O2—S1—C10106.17 (8)C8—C9—H9C109.5
O3—S1—C10105.92 (7)H9A—C9—H9C109.5
O1—S1—C10106.21 (7)H9B—C9—H9C109.5
C2—C1—C6123.69 (15)C15—C10—C11120.17 (16)
C2—C1—N1117.11 (14)C15—C10—S1120.01 (13)
C6—C1—N1119.15 (14)C11—C10—S1119.79 (13)
C1—C2—C3117.31 (15)C12—C11—C10119.79 (16)
C1—C2—C7122.52 (15)C12—C11—H11120.1
C3—C2—C7120.16 (16)C10—C11—H11120.1
C4—C3—C2120.86 (16)C11—C12—C13120.95 (17)
C4—C3—H3119.6C11—C12—H12119.5
C2—C3—H3119.6C13—C12—H12119.5
C3—C4—C5120.35 (16)C14—C13—C12118.31 (16)
C3—C4—H4119.8C14—C13—C16120.74 (17)
C5—C4—H4119.8C12—C13—C16120.94 (17)
C4—C5—C6121.05 (16)C13—C14—C15121.31 (17)
C4—C5—H5119.5C13—C14—H14119.3
C6—C5—H5119.5C15—C14—H14119.3
C1—C6—C5116.73 (15)C10—C15—C14119.45 (17)
C1—C6—C8121.31 (15)C10—C15—H15120.3
C5—C6—C8121.96 (15)C14—C15—H15120.3
C2—C7—H7A109.5C13—C16—H16A109.5
C2—C7—H7B109.5C13—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
C2—C7—H7C109.5C13—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
C6—C8—C9115.46 (15)C1—N1—H1A109.5
C6—C8—H8A108.4C1—N1—H1B109.5
C9—C8—H8A108.4H1A—N1—H1B109.5
C6—C8—H8B108.4C1—N1—H1C109.5
C9—C8—H8B108.4H1A—N1—H1C109.5
H8A—C8—H8B107.5H1B—N1—H1C109.5
C6—C1—C2—C30.8 (2)O2—S1—C10—C1527.27 (16)
N1—C1—C2—C3178.16 (14)O3—S1—C10—C1593.63 (15)
C6—C1—C2—C7179.91 (16)O1—S1—C10—C15147.40 (13)
N1—C1—C2—C72.5 (2)O2—S1—C10—C11154.60 (13)
C1—C2—C3—C40.7 (3)O3—S1—C10—C1184.50 (14)
C7—C2—C3—C4179.95 (16)O1—S1—C10—C1134.46 (15)
C2—C3—C4—C50.4 (3)C15—C10—C11—C120.5 (3)
C3—C4—C5—C60.0 (3)S1—C10—C11—C12177.65 (13)
C2—C1—C6—C50.5 (2)C10—C11—C12—C130.1 (3)
N1—C1—C6—C5177.76 (14)C11—C12—C13—C140.7 (3)
C2—C1—C6—C8179.76 (16)C11—C12—C13—C16179.50 (16)
N1—C1—C6—C82.5 (2)C12—C13—C14—C151.1 (3)
C4—C5—C6—C10.0 (2)C16—C13—C14—C15179.94 (17)
C4—C5—C6—C8179.83 (17)C11—C10—C15—C140.1 (3)
C1—C6—C8—C9179.87 (17)S1—C10—C15—C14178.07 (13)
C5—C6—C8—C90.4 (3)C13—C14—C15—C100.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.911.882.7727 (18)168
N1—H1B···O3ii0.911.892.7800 (19)166
N1—H1A···O2iii0.911.952.7917 (18)153
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H14N+·C7H7O3S
Mr307.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)15.2514 (9), 6.1889 (4), 16.9242 (10)
β (°) 102.850 (1)
V3)1557.46 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.34 × 0.27
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.904, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
7882, 3354, 2555
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.08
No. of reflections3354
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.911.882.7727 (18)167.9
N1—H1B···O3ii0.911.892.7800 (19)166.3
N1—H1A···O2iii0.911.952.7917 (18)152.8
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors express their thanks to the National Key Technology Research and Development Programme (grant No. 2006BAE01A01-4).

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationKhemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153–o1155.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirani, W., Amri, O. & Rzaigui, M. (2008). Acta Cryst. E64, o2463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds