organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-bromo­benz­yl) tris­­ulfide

aDepartment of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1, and bDepartment of Chemistry, University of Toronto, 80 St., George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 14 January 2009; accepted 14 January 2009; online 23 January 2009)

The title mol­ecule, C14H12Br2S3, lies on a crystallographic twofold rotation axis which bis­ects the S—S—S angle. The dihedral angle between the two symmetry-related benzene rings is 89.91 (9)°. In terms of hybridization principles, the S—C—C angle is slightly larger than expected.

Related literature

For related literature, see: Haoyun et al. (2006[Haoyun, A., Jenny, Z., Xiaobo, W. & Xiao, X. (2006). Bioorg. Med. Chem. Lett. 16, 4826-4829.]); De Sousa et al. (1990[De Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E. & Cassels, B. K. (1990). Phytochemistry, 29, 3653-3655.]); Johnson et al. (1997[Johnson, L., Williams, L. A. D. & Roberst, E. V. (1997). Pestic. Sci. 50, 228-232.]); Rys et al. (2008[Rys, A. Z., Abu-Yousef, I. A. & Harpp, D. N. (2008). Tetrahedron Lett. 49, 6670-6673.]). For a related synthesis see: Banerji & Kalena (1980[Banerji, A. & Kalena, G. P. (1980). Tetrahedron Lett. 21, 3003-3004.]); O'Donnell & Schwan (2003[O'Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293-6296.]). For a related crystal structure, see: Abu-Yousef et al. (2006[Abu-Yousef, I. A., Rys, A. Z. & Harpp, D. N. (2006). J. Sulfur Chem. 27, 15-24.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12Br2S3

  • Mr = 436.24

  • Orthorhombic, P 21 21 2

  • a = 12.771 (3) Å

  • b = 13.030 (3) Å

  • c = 4.7635 (10) Å

  • V = 792.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 150 (1) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.378, Tmax = 0.576

  • 5451 measured reflections

  • 1745 independent reflections

  • 1447 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.06

  • 1745 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 659 Friedel pairs

  • Flack parameter: −0.024 (13)

Table 1
Selected bond angles (°)

S2i—S1—S2 106.21 (9)
C2—C1—S2 114.0 (3)
Symmetry code: (i) -x+1, -y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic sulfides are an attractive class of compounds because of their synthetic and pharmaceutical applications. Dibenzyl trisulfide was isolated from the sub-tropical shrub Petiveria alliacea L. (De Sousa et al., 1990; Johnson et al., 1997). Dibenzyl trisulfide dervatives have been synthesized in moderate yield via a diimidazolyl sulfide derivative (Banerji & Kalena, 1980). The immunomodulatory activitities, molecular mechanism, anti tumor activities and some other biological activities of dibenzyltrisulfide derivatives have been reported (Haoyun et al., 2006).

In the title molecule (Fig. 1), the bond lengths and bond angles are comparable to those observed in a similar compound (Abu-Yousef et al., 2006).

Related literature top

For related literature, see: Haoyun et al. (2006); De Sousa et al. (1990); Johnson et al. (1997); Rys et al. (2008). For a related synthesis see: Banerji & Kalena (1980); O'Donnell & Schwan (2003). For a related crystal structure, see: Abu-Yousef et al. (2006).

Experimental top

The N-protected amino acid derivative (1) (Fig. 2) was synthesized by following the described procedure for its benzyl analog (O'Donnell & Schwan, 2003). Compound (1) was reacted with trifluoroacetic acid (20 equiv.) at 273 K for 2 hr to give amino acid derivative (2). The title compound (3) was prepared by stirring (2) in dichloromethane at room temperature in 20% yield and was crystallized by slow evaporation of a dichloromethane/methanol (9:1, v/v) solution. It should be noted that compound (2) in dichlorometane on standing at room temperature for several days also gave compound (3).

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 - 0.99Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. All non-H atoms are represented by 30% probability displacement ellipsoids. Atoms labeled with the suffix 'a' are related by the symmetry operator (-x + 1, -y, z).
[Figure 2] Fig. 2. The reaction scheme for the formation of the title compound.
Bis(2-bromobenzyl) trisulfide top
Crystal data top
C14H12Br2S3F(000) = 428
Mr = 436.24Dx = 1.828 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 5451 reflections
a = 12.771 (3) Åθ = 3.1–27.5°
b = 13.030 (3) ŵ = 5.49 mm1
c = 4.7635 (10) ÅT = 150 K
V = 792.7 (3) Å3Block, colourless
Z = 20.16 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1745 independent reflections
Radiation source: fine-focus sealed tube1447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ scans and ω scans with κ offsetsh = 1616
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.378, Tmax = 0.576l = 66
5451 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1745 reflectionsΔρmax = 0.32 e Å3
87 parametersΔρmin = 0.72 e Å3
0 restraintsAbsolute structure: Flack (1983), 659 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (13)
Crystal data top
C14H12Br2S3V = 792.7 (3) Å3
Mr = 436.24Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 12.771 (3) ŵ = 5.49 mm1
b = 13.030 (3) ÅT = 150 K
c = 4.7635 (10) Å0.16 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1745 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1447 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.576Rint = 0.047
5451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.32 e Å3
S = 1.06Δρmin = 0.72 e Å3
1745 reflectionsAbsolute structure: Flack (1983), 659 Friedel pairs
87 parametersAbsolute structure parameter: 0.024 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42247 (3)0.38038 (3)0.13013 (11)0.04922 (17)
S10.50000.00000.2536 (3)0.0305 (3)
S20.53734 (6)0.11976 (7)0.0036 (2)0.0319 (2)
C10.4113 (3)0.1583 (3)0.1526 (8)0.0311 (8)
H1A0.42210.21960.27180.037*
H1B0.38530.10240.27500.037*
C20.3293 (3)0.1822 (3)0.0620 (7)0.0271 (8)
C30.2529 (3)0.1057 (3)0.1324 (8)0.0356 (9)
H3A0.25440.04120.03950.043*
C40.1784 (3)0.1239 (3)0.3296 (8)0.0369 (9)
H4A0.12820.07240.37220.044*
C50.1750 (3)0.2175 (3)0.4693 (9)0.0433 (11)
H5A0.12320.22940.60860.052*
C60.2470 (3)0.2930 (3)0.4058 (8)0.0367 (10)
H6A0.24460.35720.50020.044*
C70.3222 (3)0.2750 (3)0.2054 (8)0.0283 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0469 (2)0.0294 (2)0.0713 (3)0.00040 (19)0.0036 (2)0.0041 (2)
S10.0356 (7)0.0339 (7)0.0219 (6)0.0098 (6)0.0000.000
S20.0286 (4)0.0303 (4)0.0369 (5)0.0012 (4)0.0002 (4)0.0007 (5)
C10.0356 (19)0.0353 (18)0.0224 (18)0.0040 (16)0.0018 (16)0.0010 (15)
C20.0272 (18)0.0307 (19)0.023 (2)0.0053 (15)0.0051 (13)0.0018 (15)
C30.043 (2)0.037 (2)0.027 (2)0.0185 (18)0.015 (2)0.007 (2)
C40.0286 (19)0.044 (2)0.038 (2)0.0044 (18)0.0051 (16)0.010 (2)
C50.033 (2)0.063 (3)0.033 (2)0.016 (2)0.0022 (18)0.004 (2)
C60.038 (2)0.041 (2)0.031 (2)0.0149 (19)0.0079 (19)0.0082 (18)
C70.0277 (19)0.0294 (18)0.028 (2)0.0042 (14)0.0081 (15)0.0033 (15)
Geometric parameters (Å, º) top
Br1—C71.911 (3)C3—C41.358 (5)
S1—S2i2.0403 (13)C3—H3A0.9500
S1—S22.0403 (13)C4—C51.389 (5)
S2—C11.829 (3)C4—H4A0.9500
C1—C21.496 (5)C5—C61.380 (6)
C1—H1A0.9900C5—H5A0.9500
C1—H1B0.9900C6—C71.374 (5)
C2—C71.392 (5)C6—H6A0.9500
C2—C31.435 (5)
S2i—S1—S2106.21 (9)C2—C3—H3A119.5
C1—S2—S1103.71 (12)C3—C4—C5120.5 (4)
C2—C1—S2114.0 (3)C3—C4—H4A119.8
C2—C1—H1A108.7C5—C4—H4A119.8
S2—C1—H1A108.7C6—C5—C4120.0 (4)
C2—C1—H1B108.7C6—C5—H5A120.0
S2—C1—H1B108.7C4—C5—H5A120.0
H1A—C1—H1B107.6C7—C6—C5119.8 (4)
C7—C2—C3116.4 (3)C7—C6—H6A120.1
C7—C2—C1124.2 (3)C5—C6—H6A120.1
C3—C2—C1119.4 (3)C6—C7—C2122.3 (3)
C4—C3—C2121.1 (4)C6—C7—Br1118.4 (3)
C4—C3—H3A119.5C2—C7—Br1119.2 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12Br2S3
Mr436.24
Crystal system, space groupOrthorhombic, P21212
Temperature (K)150
a, b, c (Å)12.771 (3), 13.030 (3), 4.7635 (10)
V3)792.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.378, 0.576
No. of measured, independent and
observed [I > 2σ(I)] reflections
5451, 1745, 1447
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.06
No. of reflections1745
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.72
Absolute structureFlack (1983), 659 Friedel pairs
Absolute structure parameter0.024 (13)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond angles (º) top
S2i—S1—S2106.21 (9)C2—C1—S2114.0 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. AJL thanks NSERC Canada for funding.

References

First citationAbu-Yousef, I. A., Rys, A. Z. & Harpp, D. N. (2006). J. Sulfur Chem. 27, 15–24.  CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBanerji, A. & Kalena, G. P. (1980). Tetrahedron Lett. 21, 3003–3004.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E. & Cassels, B. K. (1990). Phytochemistry, 29, 3653–3655.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaoyun, A., Jenny, Z., Xiaobo, W. & Xiao, X. (2006). Bioorg. Med. Chem. Lett. 16, 4826–4829.  Web of Science PubMed Google Scholar
First citationJohnson, L., Williams, L. A. D. & Roberst, E. V. (1997). Pestic. Sci. 50, 228–232.  CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO'Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293–6296.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. New York: Academic Press.  Google Scholar
First citationRys, A. Z., Abu-Yousef, I. A. & Harpp, D. N. (2008). Tetrahedron Lett. 49, 6670–6673.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds