organic compounds
Bis(2-bromobenzyl) trisulfide
aDepartment of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1, and bDepartment of Chemistry, University of Toronto, 80 St., George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca
The title molecule, C14H12Br2S3, lies on a crystallographic twofold rotation axis which bisects the S—S—S angle. The dihedral angle between the two symmetry-related benzene rings is 89.91 (9)°. In terms of principles, the S—C—C angle is slightly larger than expected.
Related literature
For related literature, see: Haoyun et al. (2006); De Sousa et al. (1990); Johnson et al. (1997); Rys et al. (2008). For a related synthesis see: Banerji & Kalena (1980); O'Donnell & Schwan (2003). For a related see: Abu-Yousef et al. (2006).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809001834/pv2135sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001834/pv2135Isup2.hkl
The N-protected amino acid derivative (1) (Fig. 2) was synthesized by following the described procedure for its benzyl analog (O'Donnell & Schwan, 2003). Compound (1) was reacted with trifluoroacetic acid (20 equiv.) at 273 K for 2 hr to give amino acid derivative (2). The title compound (3) was prepared by stirring (2) in dichloromethane at room temperature in 20% yield and was crystallized by slow evaporation of a dichloromethane/methanol (9:1, v/v) solution. It should be noted that compound (2) in dichlorometane on standing at room temperature for several days also gave compound (3).
H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 - 0.99Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H12Br2S3 | F(000) = 428 |
Mr = 436.24 | Dx = 1.828 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 5451 reflections |
a = 12.771 (3) Å | θ = 3.1–27.5° |
b = 13.030 (3) Å | µ = 5.49 mm−1 |
c = 4.7635 (10) Å | T = 150 K |
V = 792.7 (3) Å3 | Block, colourless |
Z = 2 | 0.16 × 0.12 × 0.10 mm |
Nonius KappaCCD diffractometer | 1745 independent reflections |
Radiation source: fine-focus sealed tube | 1447 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ϕ scans and ω scans with κ offsets | h = −16→16 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −16→16 |
Tmin = 0.378, Tmax = 0.576 | l = −6→6 |
5451 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1745 reflections | Δρmax = 0.32 e Å−3 |
87 parameters | Δρmin = −0.72 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 659 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.024 (13) |
C14H12Br2S3 | V = 792.7 (3) Å3 |
Mr = 436.24 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 12.771 (3) Å | µ = 5.49 mm−1 |
b = 13.030 (3) Å | T = 150 K |
c = 4.7635 (10) Å | 0.16 × 0.12 × 0.10 mm |
Nonius KappaCCD diffractometer | 1745 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 1447 reflections with I > 2σ(I) |
Tmin = 0.378, Tmax = 0.576 | Rint = 0.047 |
5451 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.081 | Δρmax = 0.32 e Å−3 |
S = 1.06 | Δρmin = −0.72 e Å−3 |
1745 reflections | Absolute structure: Flack (1983), 659 Friedel pairs |
87 parameters | Absolute structure parameter: −0.024 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.42247 (3) | 0.38038 (3) | 0.13013 (11) | 0.04922 (17) | |
S1 | 0.5000 | 0.0000 | 0.2536 (3) | 0.0305 (3) | |
S2 | 0.53734 (6) | 0.11976 (7) | −0.0036 (2) | 0.0319 (2) | |
C1 | 0.4113 (3) | 0.1583 (3) | −0.1526 (8) | 0.0311 (8) | |
H1A | 0.4221 | 0.2196 | −0.2718 | 0.037* | |
H1B | 0.3853 | 0.1024 | −0.2750 | 0.037* | |
C2 | 0.3293 (3) | 0.1822 (3) | 0.0620 (7) | 0.0271 (8) | |
C3 | 0.2529 (3) | 0.1057 (3) | 0.1324 (8) | 0.0356 (9) | |
H3A | 0.2544 | 0.0412 | 0.0395 | 0.043* | |
C4 | 0.1784 (3) | 0.1239 (3) | 0.3296 (8) | 0.0369 (9) | |
H4A | 0.1282 | 0.0724 | 0.3722 | 0.044* | |
C5 | 0.1750 (3) | 0.2175 (3) | 0.4693 (9) | 0.0433 (11) | |
H5A | 0.1232 | 0.2294 | 0.6086 | 0.052* | |
C6 | 0.2470 (3) | 0.2930 (3) | 0.4058 (8) | 0.0367 (10) | |
H6A | 0.2446 | 0.3572 | 0.5002 | 0.044* | |
C7 | 0.3222 (3) | 0.2750 (3) | 0.2054 (8) | 0.0283 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0469 (2) | 0.0294 (2) | 0.0713 (3) | −0.00040 (19) | −0.0036 (2) | 0.0041 (2) |
S1 | 0.0356 (7) | 0.0339 (7) | 0.0219 (6) | 0.0098 (6) | 0.000 | 0.000 |
S2 | 0.0286 (4) | 0.0303 (4) | 0.0369 (5) | 0.0012 (4) | 0.0002 (4) | −0.0007 (5) |
C1 | 0.0356 (19) | 0.0353 (18) | 0.0224 (18) | 0.0040 (16) | −0.0018 (16) | 0.0010 (15) |
C2 | 0.0272 (18) | 0.0307 (19) | 0.023 (2) | 0.0053 (15) | −0.0051 (13) | 0.0018 (15) |
C3 | 0.043 (2) | 0.037 (2) | 0.027 (2) | 0.0185 (18) | −0.015 (2) | −0.007 (2) |
C4 | 0.0286 (19) | 0.044 (2) | 0.038 (2) | −0.0044 (18) | −0.0051 (16) | 0.010 (2) |
C5 | 0.033 (2) | 0.063 (3) | 0.033 (2) | 0.016 (2) | 0.0022 (18) | 0.004 (2) |
C6 | 0.038 (2) | 0.041 (2) | 0.031 (2) | 0.0149 (19) | −0.0079 (19) | −0.0082 (18) |
C7 | 0.0277 (19) | 0.0294 (18) | 0.028 (2) | 0.0042 (14) | −0.0081 (15) | 0.0033 (15) |
Br1—C7 | 1.911 (3) | C3—C4 | 1.358 (5) |
S1—S2i | 2.0403 (13) | C3—H3A | 0.9500 |
S1—S2 | 2.0403 (13) | C4—C5 | 1.389 (5) |
S2—C1 | 1.829 (3) | C4—H4A | 0.9500 |
C1—C2 | 1.496 (5) | C5—C6 | 1.380 (6) |
C1—H1A | 0.9900 | C5—H5A | 0.9500 |
C1—H1B | 0.9900 | C6—C7 | 1.374 (5) |
C2—C7 | 1.392 (5) | C6—H6A | 0.9500 |
C2—C3 | 1.435 (5) | ||
S2i—S1—S2 | 106.21 (9) | C2—C3—H3A | 119.5 |
C1—S2—S1 | 103.71 (12) | C3—C4—C5 | 120.5 (4) |
C2—C1—S2 | 114.0 (3) | C3—C4—H4A | 119.8 |
C2—C1—H1A | 108.7 | C5—C4—H4A | 119.8 |
S2—C1—H1A | 108.7 | C6—C5—C4 | 120.0 (4) |
C2—C1—H1B | 108.7 | C6—C5—H5A | 120.0 |
S2—C1—H1B | 108.7 | C4—C5—H5A | 120.0 |
H1A—C1—H1B | 107.6 | C7—C6—C5 | 119.8 (4) |
C7—C2—C3 | 116.4 (3) | C7—C6—H6A | 120.1 |
C7—C2—C1 | 124.2 (3) | C5—C6—H6A | 120.1 |
C3—C2—C1 | 119.4 (3) | C6—C7—C2 | 122.3 (3) |
C4—C3—C2 | 121.1 (4) | C6—C7—Br1 | 118.4 (3) |
C4—C3—H3A | 119.5 | C2—C7—Br1 | 119.2 (3) |
Symmetry code: (i) −x+1, −y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12Br2S3 |
Mr | 436.24 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 150 |
a, b, c (Å) | 12.771 (3), 13.030 (3), 4.7635 (10) |
V (Å3) | 792.7 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.49 |
Crystal size (mm) | 0.16 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.378, 0.576 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5451, 1745, 1447 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.081, 1.06 |
No. of reflections | 1745 |
No. of parameters | 87 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.72 |
Absolute structure | Flack (1983), 659 Friedel pairs |
Absolute structure parameter | −0.024 (13) |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. AJL thanks NSERC Canada for funding.
References
Abu-Yousef, I. A., Rys, A. Z. & Harpp, D. N. (2006). J. Sulfur Chem. 27, 15–24. CSD CrossRef CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Banerji, A. & Kalena, G. P. (1980). Tetrahedron Lett. 21, 3003–3004. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
De Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E. & Cassels, B. K. (1990). Phytochemistry, 29, 3653–3655. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Haoyun, A., Jenny, Z., Xiaobo, W. & Xiao, X. (2006). Bioorg. Med. Chem. Lett. 16, 4826–4829. Web of Science PubMed Google Scholar
Johnson, L., Williams, L. A. D. & Roberst, E. V. (1997). Pestic. Sci. 50, 228–232. CrossRef CAS Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
O'Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293–6296. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. New York: Academic Press. Google Scholar
Rys, A. Z., Abu-Yousef, I. A. & Harpp, D. N. (2008). Tetrahedron Lett. 49, 6670–6673. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic sulfides are an attractive class of compounds because of their synthetic and pharmaceutical applications. Dibenzyl trisulfide was isolated from the sub-tropical shrub Petiveria alliacea L. (De Sousa et al., 1990; Johnson et al., 1997). Dibenzyl trisulfide dervatives have been synthesized in moderate yield via a diimidazolyl sulfide derivative (Banerji & Kalena, 1980). The immunomodulatory activitities, molecular mechanism, anti tumor activities and some other biological activities of dibenzyltrisulfide derivatives have been reported (Haoyun et al., 2006).
In the title molecule (Fig. 1), the bond lengths and bond angles are comparable to those observed in a similar compound (Abu-Yousef et al., 2006).