organic compounds
1-(4-Chlorophenyl)-3-(2,4-dichlorobenzoyl)thiourea
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J.-W.-Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: khawar_rauf@hotmail.com
The title compound, C14H9Cl3N2OS, has bond lengths and angles which are quite typical for thiourea compounds of this class. The molecule exists in the solid state in its thione form with typical thiourea C=S and C=O bond lengths, as well as shortened C—N bonds. An intramolecular N—H⋯O hydrogen bond stabilizes the molecular conformation. Intermolecular N—H⋯S hydrogen bonds link the molecules to form centrosymmetric dimers.
Related literature
For thiourea derivatives with biological activities, see: Baily et al. (1996); Koch (2001); Maryanoff et al. (1986); Namgun et al. (2001); Patil & Chedekel (1984); Upadlgaya & Srivastava (1982); Wegner et al. (1986); Krishnamurthy et al. (1999). For related structures, see: Khawar Rauf et al. (2006a,b,c, 2007). For standard bond-length data, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680900004X/rk2121sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680900004X/rk2121Isup2.hkl
Freshly prepared 2,4-dichlorobenzoyl isothiocyanate (2.3 g, 10 mmol) was stirred in acetone (40 ml) for 20 min. Neat 4-chloroaniline (1.3 g, 10 mmol) was then added and the resulting mixture was stirred for 1.5 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol–1,1-dichloromethane (1:10 v/v) to give fine crystals of title compound, with an overall yield of 90%. Full spectroscopic and physical characterization will be reported elsewhere.
H atoms were located in a difference map, but those bonded to C were refined with fixed individual displacement parameters Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å. The H atoms bonded to N were refined freely.
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H9Cl3N2OS | Z = 2 |
Mr = 359.65 | F(000) = 364 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9674 (6) Å | Cell parameters from 8758 reflections |
b = 9.6577 (9) Å | θ = 3.7–27.1° |
c = 13.9585 (13) Å | µ = 0.72 mm−1 |
α = 92.919 (6)° | T = 173 K |
β = 98.005 (7)° | Block, colourless |
γ = 101.330 (8)° | 0.37 × 0.34 × 0.33 mm |
V = 778.54 (13) Å3 |
Stoe IPDS II two-circle diffractometer | 3418 independent reflections |
Radiation source: fine-focus sealed tube | 3154 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 27.1°, θmin = 3.5° |
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) | h = −7→7 |
Tmin = 0.776, Tmax = 0.797 | k = −12→12 |
10758 measured reflections | l = −16→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.3093P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3418 reflections | Δρmax = 0.35 e Å−3 |
199 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.032 (3) |
C14H9Cl3N2OS | γ = 101.330 (8)° |
Mr = 359.65 | V = 778.54 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.9674 (6) Å | Mo Kα radiation |
b = 9.6577 (9) Å | µ = 0.72 mm−1 |
c = 13.9585 (13) Å | T = 173 K |
α = 92.919 (6)° | 0.37 × 0.34 × 0.33 mm |
β = 98.005 (7)° |
Stoe IPDS II two-circle diffractometer | 3418 independent reflections |
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) | 3154 reflections with I > 2σ(I) |
Tmin = 0.776, Tmax = 0.797 | Rint = 0.037 |
10758 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.35 e Å−3 |
3418 reflections | Δρmin = −0.30 e Å−3 |
199 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.67492 (6) | 0.98619 (3) | 0.38939 (2) | 0.02427 (11) | |
Cl1 | 1.21954 (7) | 0.58845 (5) | 0.63698 (3) | 0.03934 (12) | |
Cl2 | 1.28238 (9) | 0.84274 (6) | 0.99473 (3) | 0.05304 (15) | |
Cl3 | −0.25621 (7) | 0.63336 (6) | 0.06553 (3) | 0.04618 (14) | |
O1 | 0.69489 (18) | 0.58953 (10) | 0.55419 (8) | 0.0271 (2) | |
N1 | 0.7744 (2) | 0.82647 (12) | 0.53113 (8) | 0.0217 (2) | |
H1 | 0.870 (3) | 0.901 (2) | 0.5518 (14) | 0.031 (5)* | |
N2 | 0.48353 (19) | 0.71427 (12) | 0.40789 (8) | 0.0214 (2) | |
H2 | 0.488 (3) | 0.644 (2) | 0.4369 (15) | 0.036 (5)* | |
C1 | 0.7879 (2) | 0.71114 (13) | 0.58426 (10) | 0.0198 (2) | |
C2 | 0.6359 (2) | 0.83297 (13) | 0.44250 (9) | 0.0194 (2) | |
C11 | 0.9208 (2) | 0.74977 (13) | 0.68462 (10) | 0.0211 (3) | |
C12 | 1.1140 (2) | 0.69336 (14) | 0.71709 (11) | 0.0253 (3) | |
C13 | 1.2283 (3) | 0.72390 (16) | 0.81191 (11) | 0.0319 (3) | |
H13 | 1.3614 | 0.6870 | 0.8331 | 0.038* | |
C14 | 1.1437 (3) | 0.80951 (17) | 0.87478 (11) | 0.0332 (3) | |
C15 | 0.9539 (3) | 0.86812 (18) | 0.84524 (12) | 0.0357 (3) | |
H15 | 0.8995 | 0.9269 | 0.8895 | 0.043* | |
C16 | 0.8441 (3) | 0.83931 (16) | 0.74932 (11) | 0.0294 (3) | |
H16 | 0.7162 | 0.8808 | 0.7277 | 0.035* | |
C21 | 0.3125 (2) | 0.70259 (13) | 0.32315 (9) | 0.0202 (3) | |
C22 | 0.1340 (2) | 0.77684 (15) | 0.32197 (11) | 0.0266 (3) | |
H22 | 0.1311 | 0.8405 | 0.3757 | 0.032* | |
C23 | −0.0402 (2) | 0.75754 (16) | 0.24188 (11) | 0.0290 (3) | |
H23 | −0.1616 | 0.8083 | 0.2401 | 0.035* | |
C24 | −0.0327 (2) | 0.66248 (16) | 0.16468 (10) | 0.0274 (3) | |
C25 | 0.1444 (3) | 0.58874 (16) | 0.16452 (10) | 0.0288 (3) | |
H25 | 0.1471 | 0.5253 | 0.1106 | 0.035* | |
C26 | 0.3185 (2) | 0.60921 (14) | 0.24475 (10) | 0.0246 (3) | |
H26 | 0.4411 | 0.5594 | 0.2459 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02479 (18) | 0.01930 (16) | 0.02596 (18) | −0.00011 (12) | −0.00124 (13) | 0.00791 (12) |
Cl1 | 0.0333 (2) | 0.0460 (2) | 0.0449 (2) | 0.02251 (17) | 0.00655 (16) | 0.00362 (17) |
Cl2 | 0.0557 (3) | 0.0652 (3) | 0.0274 (2) | −0.0014 (2) | −0.01264 (18) | 0.00720 (19) |
Cl3 | 0.0303 (2) | 0.0761 (3) | 0.0284 (2) | 0.01286 (19) | −0.00926 (15) | −0.00085 (19) |
O1 | 0.0275 (5) | 0.0176 (4) | 0.0327 (5) | 0.0013 (4) | −0.0038 (4) | 0.0041 (4) |
N1 | 0.0221 (5) | 0.0163 (5) | 0.0228 (6) | −0.0012 (4) | −0.0029 (4) | 0.0031 (4) |
N2 | 0.0222 (5) | 0.0169 (5) | 0.0227 (5) | 0.0015 (4) | −0.0022 (4) | 0.0040 (4) |
C1 | 0.0160 (6) | 0.0204 (6) | 0.0232 (6) | 0.0038 (4) | 0.0026 (5) | 0.0045 (5) |
C2 | 0.0186 (6) | 0.0194 (6) | 0.0199 (6) | 0.0037 (4) | 0.0015 (5) | 0.0021 (4) |
C11 | 0.0196 (6) | 0.0194 (6) | 0.0231 (6) | 0.0015 (4) | 0.0014 (5) | 0.0058 (5) |
C12 | 0.0209 (6) | 0.0251 (6) | 0.0299 (7) | 0.0046 (5) | 0.0026 (5) | 0.0080 (5) |
C13 | 0.0233 (7) | 0.0353 (8) | 0.0351 (8) | 0.0031 (6) | −0.0031 (6) | 0.0145 (6) |
C14 | 0.0335 (8) | 0.0365 (8) | 0.0232 (7) | −0.0036 (6) | −0.0039 (6) | 0.0085 (6) |
C15 | 0.0420 (9) | 0.0382 (8) | 0.0263 (7) | 0.0090 (7) | 0.0032 (6) | 0.0003 (6) |
C16 | 0.0299 (7) | 0.0315 (7) | 0.0277 (7) | 0.0105 (6) | 0.0013 (6) | 0.0028 (6) |
C21 | 0.0189 (6) | 0.0185 (6) | 0.0209 (6) | 0.0002 (4) | −0.0002 (5) | 0.0045 (5) |
C22 | 0.0251 (7) | 0.0249 (6) | 0.0289 (7) | 0.0066 (5) | 0.0006 (5) | −0.0020 (5) |
C23 | 0.0217 (6) | 0.0325 (7) | 0.0330 (7) | 0.0092 (5) | −0.0001 (6) | 0.0028 (6) |
C24 | 0.0216 (6) | 0.0364 (7) | 0.0217 (6) | 0.0025 (5) | −0.0014 (5) | 0.0051 (5) |
C25 | 0.0298 (7) | 0.0346 (7) | 0.0211 (6) | 0.0066 (6) | 0.0022 (5) | −0.0014 (5) |
C26 | 0.0232 (6) | 0.0265 (6) | 0.0246 (7) | 0.0073 (5) | 0.0020 (5) | 0.0029 (5) |
S1—C2 | 1.6786 (13) | C13—H13 | 0.9500 |
Cl1—C12 | 1.7336 (15) | C14—C15 | 1.385 (2) |
Cl2—C14 | 1.7454 (16) | C15—C16 | 1.395 (2) |
Cl3—C24 | 1.7529 (14) | C15—H15 | 0.9500 |
O1—C1 | 1.2217 (16) | C16—H16 | 0.9500 |
N1—C1 | 1.3784 (16) | C21—C26 | 1.3912 (19) |
N1—C2 | 1.4003 (17) | C21—C22 | 1.3947 (19) |
N1—H1 | 0.84 (2) | C22—C23 | 1.394 (2) |
N2—C2 | 1.3365 (17) | C22—H22 | 0.9500 |
N2—C21 | 1.4348 (16) | C23—C24 | 1.391 (2) |
N2—H2 | 0.81 (2) | C23—H23 | 0.9500 |
C1—C11 | 1.5004 (18) | C24—C25 | 1.385 (2) |
C11—C12 | 1.3993 (19) | C25—C26 | 1.395 (2) |
C11—C16 | 1.401 (2) | C25—H25 | 0.9500 |
C12—C13 | 1.391 (2) | C26—H26 | 0.9500 |
C13—C14 | 1.387 (2) | ||
C1—N1—C2 | 128.79 (11) | C14—C15—C16 | 118.83 (15) |
C1—N1—H1 | 115.9 (13) | C14—C15—H15 | 120.6 |
C2—N1—H1 | 115.1 (13) | C16—C15—H15 | 120.6 |
C2—N2—C21 | 124.59 (11) | C15—C16—C11 | 120.59 (14) |
C2—N2—H2 | 117.6 (14) | C15—C16—H16 | 119.7 |
C21—N2—H2 | 117.8 (14) | C11—C16—H16 | 119.7 |
O1—C1—N1 | 123.60 (12) | C26—C21—C22 | 120.47 (12) |
O1—C1—C11 | 122.92 (12) | C26—C21—N2 | 119.04 (12) |
N1—C1—C11 | 113.44 (11) | C22—C21—N2 | 120.35 (12) |
N2—C2—N1 | 115.97 (11) | C23—C22—C21 | 119.97 (13) |
N2—C2—S1 | 125.98 (10) | C23—C22—H22 | 120.0 |
N1—C2—S1 | 118.06 (9) | C21—C22—H22 | 120.0 |
C12—C11—C16 | 118.82 (13) | C24—C23—C22 | 118.73 (13) |
C12—C11—C1 | 121.64 (12) | C24—C23—H23 | 120.6 |
C16—C11—C1 | 119.48 (12) | C22—C23—H23 | 120.6 |
C13—C12—C11 | 121.15 (14) | C25—C24—C23 | 121.94 (13) |
C13—C12—Cl1 | 119.15 (11) | C25—C24—Cl3 | 119.11 (11) |
C11—C12—Cl1 | 119.66 (11) | C23—C24—Cl3 | 118.95 (11) |
C14—C13—C12 | 118.49 (14) | C24—C25—C26 | 118.95 (13) |
C14—C13—H13 | 120.8 | C24—C25—H25 | 120.5 |
C12—C13—H13 | 120.8 | C26—C25—H25 | 120.5 |
C15—C14—C13 | 122.07 (14) | C21—C26—C25 | 119.93 (13) |
C15—C14—Cl2 | 119.67 (13) | C21—C26—H26 | 120.0 |
C13—C14—Cl2 | 118.26 (12) | C25—C26—H26 | 120.0 |
C2—N1—C1—O1 | 9.0 (2) | C13—C14—C15—C16 | 0.3 (2) |
C2—N1—C1—C11 | −168.72 (12) | Cl2—C14—C15—C16 | −179.43 (12) |
C21—N2—C2—N1 | 174.17 (12) | C14—C15—C16—C11 | 1.6 (2) |
C21—N2—C2—S1 | −6.02 (19) | C12—C11—C16—C15 | −2.0 (2) |
C1—N1—C2—N2 | 5.5 (2) | C1—C11—C16—C15 | 175.05 (13) |
C1—N1—C2—S1 | −174.29 (11) | C2—N2—C21—C26 | 118.68 (15) |
O1—C1—C11—C12 | 59.43 (18) | C2—N2—C21—C22 | −65.50 (18) |
N1—C1—C11—C12 | −122.82 (13) | C26—C21—C22—C23 | 0.1 (2) |
O1—C1—C11—C16 | −117.54 (15) | N2—C21—C22—C23 | −175.68 (13) |
N1—C1—C11—C16 | 60.22 (16) | C21—C22—C23—C24 | 0.7 (2) |
C16—C11—C12—C13 | 0.5 (2) | C22—C23—C24—C25 | −1.1 (2) |
C1—C11—C12—C13 | −176.50 (12) | C22—C23—C24—Cl3 | 177.91 (11) |
C16—C11—C12—Cl1 | −177.26 (11) | C23—C24—C25—C26 | 0.8 (2) |
C1—C11—C12—Cl1 | 5.75 (17) | Cl3—C24—C25—C26 | −178.21 (11) |
C11—C12—C13—C14 | 1.4 (2) | C22—C21—C26—C25 | −0.4 (2) |
Cl1—C12—C13—C14 | 179.14 (11) | N2—C21—C26—C25 | 175.42 (12) |
C12—C13—C14—C15 | −1.8 (2) | C24—C25—C26—C21 | −0.1 (2) |
C12—C13—C14—Cl2 | 177.96 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.84 (2) | 2.71 (2) | 3.4273 (12) | 144.3 (16) |
N2—H2···O1 | 0.81 (2) | 2.06 (2) | 2.7098 (16) | 136.4 (19) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H9Cl3N2OS |
Mr | 359.65 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 5.9674 (6), 9.6577 (9), 13.9585 (13) |
α, β, γ (°) | 92.919 (6), 98.005 (7), 101.330 (8) |
V (Å3) | 778.54 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.37 × 0.34 × 0.33 |
Data collection | |
Diffractometer | Stoe IPDS II two-circle diffractometer |
Absorption correction | Multi-scan (MULABS; Spek, 2003; Blessing, 1995) |
Tmin, Tmax | 0.776, 0.797 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10758, 3418, 3154 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.078, 1.02 |
No. of reflections | 3418 |
No. of parameters | 199 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.30 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.84 (2) | 2.71 (2) | 3.4273 (12) | 144.3 (16) |
N2—H2···O1 | 0.81 (2) | 2.06 (2) | 2.7098 (16) | 136.4 (19) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Acknowledgements
MKR is grateful to the HEC, Pakistan, for financial support for a PhD programme under scholarship No. ILC-0363104.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409–1413. CrossRef Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o4296–o4298. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1155–o1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216, 473–482. Web of Science CrossRef Google Scholar
Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci. 52, 145–151. Google Scholar
Maryanoff, C. A., Stanzione, R. C., Plampin, J. N. & Mills, J. E. (1986). J. Org. Chem. 51, 1882–1884. CrossRef CAS Web of Science Google Scholar
Namgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc. 45, 96–99. Google Scholar
Patil, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997–1000. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Upadlgaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767–769. Google Scholar
Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent 190611. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-substituted and N,N'-disubstituted thiourea derivatives are very useful starting materials for the synthesis of a wide range of aliphatic macromolecular and heterocyclic compounds. Benzothiazoles have been prepared from arylthioureas in the presence of bromine (Patil & Chedekel, 1984) and condensation of thiourea with α-halocarbonyl compounds form 2-aminothiazoles (Baily et al., 1996). The 2-methyl-aminothiazolines have been synthesized by cyclization of N-(2-hydroxyethyl)-N'-methylthioureas (Namgun et al., 2001). Thioureas are efficient guanylating agents (Maryanoff et al., 1986). The N,N-dialkyl-N-aroylthioureas have been effectively used for the extraction of Ni, Pd and Pt metals (Koch, 2001). Aliphatic and acylthioureas are well known for their fungicidal, antiviral, pesticidal and plant-growth regulating activities (Upadlgaya & Srivastava, 1982; Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens Pyricularia oryzae and Drechslera oryzae (Krishnamurthy et al., 1999). We are interested in the synthesis of these thioureas as intermediates in the synthesis of novel guanidines and heterocyclic compounds for the systematic study of bioactivity and complexation behaviour and we present here the crystal structure of the title compound. The title compound (Fig. 1) shows the typical thiourea C═S and C═O double bonds as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C2—N1—C1—O1 = 9.0 (2)° and N2—C2—N1—C1 = 5.5 (2)°. This is associated with the expected typical thiourea intramolecular N—H···O hydrogen bond (Table). The dihedral angle formed by the two benzene ring planes is 9.35 (9)°. Bond lengths and angles can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database ver. 5.28 (Allen, 2002) and Khawar Rauf et al., 2006a,b,c, 2007. Intermolecular N—H···S hydrogen bonds (Table, Fig. 2), link the molecules to dimers. The Cl atoms are not involved in any type of hydrogen bonds.