organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(β-D-Allo­pyranos­yl­oxy)benzyl­­idene]methyl­amine

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 23 December 2008; accepted 8 January 2009; online 10 January 2009)

The title compound, C14H19NO6, was synthesized by the condensation reaction between hecilid (4-formyl­phenl-β-D-allopyran­oside) and methyl­amine in methanol. In the crystal structure, the pyran ring adopts a chair conformation and adjacent mol­ecules are linked by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the pharmaceutical and biological properties of hecilid and its derivatives, see: Chen et al. (1981[Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893-1897.]); Sha & Mao (1987[Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 21-27.]); Zhu et al. (2006[Zhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem. 26, 1264-1267.]); Yang et al. (2008[Yang, H. J., Hu, C., Li, Y. & Yin, S. F. (2008). Chin. J. Org. Chem. 28, 899-902.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO6

  • Mr = 297.30

  • Monoclinic, P 21

  • a = 6.721 (4) Å

  • b = 7.751 (3) Å

  • c = 14.119 (4) Å

  • β = 91.46 (3)°

  • V = 735.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 (2) K

  • 0.48 × 0.46 × 0.44 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1479 measured reflections

  • 1469 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 120 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.09

  • 1469 reflections

  • 195 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O5i 0.82 2.02 2.742 (3) 147
O3—H3O⋯O2ii 0.82 2.14 2.942 (3) 165
O4—H4O⋯O2iii 0.82 2.02 2.824 (3) 167
O5—H5O⋯N1iv 0.82 1.91 2.723 (3) 170
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The natural compound hecilid (systematic name: 4-formylphenl-β-D-allopyranoside], which is extracted from the fruit of Helicia nilagirica Beed. (Chen et al., 1981), has been one major active ingredient of herb medicine used in China for a long time. It has manifested good biological effects on the central nervous system and a low toxicity (Sha & Mao, 1987). Some derivatives of this compound have been reported with good pharmacological activities (Zhu et al., 2006; Yang et al., 2008). The title compound, a new helicid-derived compound, was synthesized via condensation reaction of hecilid and methyl amine with good yield.

In the molecule of the title compound (Fig. 1), the average of C–C bond length in the hexatomic ring is 1.524 (3) Å; The average C(sp3)–O and C(sp2)–O bond lengths are 1.421 (3) and 1.378 (3) Å, respectively. The hexatomic ring adopts chair conformation with the hydroxy group at C3 in axial position and the other substituents at C1, C2 and C4 in equatorial positions. The C(14)–N(1)–C(13)–C(10) and C(11)–C(10)–C(13)–N(1) torsion angles are -175.7 (3) and -165.5 (3) °, respectively, possibly as a consequence of O—H···.N hydrogen bond. In the crystal packing, intermolecular O—H···.O and O—H···.N hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

For the pharmaceutical and biological properties of hecilid and its derivatives, see: Chen et al. (1981); Sha & Mao (1987); Zhu et al. (2006); Yang et al. (2008).

Experimental top

A solution of helicid (1.42 g, 5 mmol) in methanol (8 ml) and a 40% aqueous solution of methyl amine (0.75 ml, 10 mmol) was subjected to ultrasonic radiation for 3 h at 333 K. On cooling to room temperature, colourless crystals were obtained unintentionally.

Refinement top

All H were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
N-[4-(β-D-Allopyranosyloxy)benzylidene]methylamine top
Crystal data top
C14H19NO6F(000) = 316
Mr = 297.30Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.721 (4) Åθ = 4.2–7.5°
b = 7.751 (3) ŵ = 0.11 mm1
c = 14.119 (4) ÅT = 292 K
β = 91.46 (3)°Block, colourless
V = 735.3 (6) Å30.48 × 0.46 × 0.44 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.4°
Graphite monochromatorh = 88
ω/2θ scansk = 09
1479 measured reflectionsl = 517
1469 independent reflections3 standard reflections every 120 reflections
1325 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0722P]
where P = (Fo2 + 2Fc2)/3
1469 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C14H19NO6V = 735.3 (6) Å3
Mr = 297.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.721 (4) ŵ = 0.11 mm1
b = 7.751 (3) ÅT = 292 K
c = 14.119 (4) Å0.48 × 0.46 × 0.44 mm
β = 91.46 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
1479 measured reflections3 standard reflections every 120 reflections
1469 independent reflections intensity decay: 0.8%
1325 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
1469 reflectionsΔρmin = 0.25 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3071 (3)0.0753 (2)0.21216 (11)0.0379 (4)
O20.4392 (3)0.3849 (2)0.12078 (13)0.0451 (5)
H2O0.40740.42600.17170.068*
O30.1787 (3)0.0239 (3)0.03679 (11)0.0441 (4)
H3O0.28540.06460.05270.066*
O40.3774 (3)0.2704 (2)0.06228 (14)0.0465 (5)
H4O0.38920.37470.07040.070*
O50.2525 (3)0.3895 (2)0.23888 (12)0.0403 (4)
H5O0.17010.42340.27640.060*
O60.3519 (2)0.0903 (3)0.34359 (10)0.0394 (4)
N11.0551 (3)0.0235 (3)0.64875 (15)0.0434 (5)
C10.3201 (4)0.0893 (3)0.11071 (17)0.0331 (5)
H10.45380.05590.09150.040*
C20.1662 (4)0.0309 (3)0.06374 (16)0.0364 (5)
H20.03330.00810.08110.044*
C30.1951 (4)0.2142 (3)0.09971 (16)0.0377 (5)
H30.08640.28730.07540.045*
C40.2018 (4)0.2204 (3)0.20805 (16)0.0336 (5)
H40.07110.18910.23200.040*
C50.3562 (4)0.0917 (3)0.24383 (15)0.0336 (5)
H50.48880.12420.22270.040*
C60.2829 (4)0.2759 (3)0.0851 (2)0.0419 (6)
H6A0.15750.31260.11100.050*
H6B0.27270.28700.01670.050*
C70.5264 (3)0.0507 (4)0.39210 (15)0.0346 (5)
C80.5361 (4)0.1100 (4)0.48498 (15)0.0373 (6)
H80.42980.17040.50980.045*
C90.7042 (4)0.0788 (4)0.54001 (15)0.0380 (6)
H90.71020.11650.60260.046*
C100.8654 (4)0.0086 (3)0.50277 (16)0.0372 (6)
C110.8541 (4)0.0656 (4)0.40913 (17)0.0414 (6)
H110.96180.12260.38340.050*
C120.6830 (4)0.0379 (4)0.35401 (16)0.0408 (6)
H120.67420.07880.29210.049*
C131.0481 (4)0.0398 (4)0.55985 (18)0.0415 (6)
H131.16290.07270.52920.050*
C141.2474 (4)0.0454 (5)0.6982 (2)0.0536 (7)
H14A1.34610.07760.65350.080*
H14B1.23680.13410.74530.080*
H14C1.28550.06110.72820.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0468 (9)0.0314 (9)0.0350 (9)0.0009 (8)0.0059 (7)0.0028 (8)
O20.0549 (11)0.0277 (9)0.0526 (10)0.0046 (8)0.0014 (8)0.0060 (8)
O30.0518 (11)0.0434 (11)0.0366 (8)0.0007 (9)0.0127 (7)0.0042 (8)
O40.0700 (13)0.0285 (9)0.0416 (9)0.0075 (9)0.0098 (8)0.0041 (8)
O50.0488 (11)0.0329 (9)0.0394 (9)0.0012 (8)0.0074 (8)0.0061 (8)
O60.0371 (9)0.0501 (11)0.0307 (8)0.0036 (8)0.0039 (7)0.0020 (8)
N10.0370 (11)0.0493 (14)0.0435 (11)0.0017 (10)0.0059 (9)0.0079 (10)
C10.0350 (12)0.0281 (12)0.0359 (11)0.0010 (10)0.0048 (9)0.0006 (10)
C20.0373 (13)0.0342 (13)0.0373 (12)0.0019 (11)0.0098 (10)0.0010 (11)
C30.0453 (13)0.0328 (12)0.0347 (12)0.0072 (12)0.0069 (10)0.0012 (11)
C40.0365 (12)0.0307 (12)0.0335 (11)0.0018 (11)0.0007 (9)0.0006 (10)
C50.0348 (12)0.0368 (13)0.0292 (11)0.0011 (11)0.0017 (9)0.0012 (10)
C60.0464 (14)0.0284 (13)0.0504 (14)0.0019 (12)0.0091 (11)0.0016 (11)
C70.0364 (12)0.0338 (12)0.0334 (11)0.0003 (11)0.0033 (9)0.0054 (10)
C80.0374 (13)0.0401 (14)0.0345 (12)0.0043 (11)0.0015 (10)0.0000 (11)
C90.0410 (13)0.0430 (14)0.0297 (11)0.0006 (11)0.0009 (9)0.0004 (11)
C100.0381 (13)0.0366 (13)0.0368 (12)0.0006 (10)0.0021 (10)0.0052 (10)
C110.0420 (14)0.0412 (14)0.0412 (13)0.0085 (12)0.0036 (10)0.0018 (12)
C120.0491 (14)0.0418 (14)0.0315 (11)0.0059 (13)0.0031 (10)0.0031 (11)
C130.0359 (13)0.0411 (15)0.0475 (14)0.0003 (11)0.0003 (11)0.0064 (12)
C140.0420 (15)0.0617 (19)0.0564 (16)0.0042 (15)0.0165 (12)0.0100 (15)
Geometric parameters (Å, º) top
O1—C51.406 (3)C4—C51.517 (3)
O1—C11.441 (3)C4—H40.9800
O2—C61.430 (3)C5—H50.9800
O2—H2O0.8200C6—H6A0.9700
O3—C21.425 (3)C6—H6B0.9700
O3—H3O0.8200C7—C121.377 (4)
O4—C31.415 (3)C7—C81.390 (3)
O4—H4O0.8200C8—C91.376 (3)
O5—C41.420 (3)C8—H80.9300
O5—H5O0.8200C9—C101.392 (4)
O6—C71.378 (3)C9—H90.9300
O6—C51.410 (3)C10—C111.394 (3)
N1—C131.261 (3)C10—C131.471 (4)
N1—C141.463 (3)C11—C121.389 (4)
C1—C61.510 (3)C11—H110.9300
C1—C21.531 (3)C12—H120.9300
C1—H10.9800C13—H130.9300
C2—C31.520 (4)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C3—C41.530 (3)C14—H14C0.9600
C3—H30.9800
C5—O1—C1111.46 (17)O6—C5—H5110.4
C6—O2—H2O109.5C4—C5—H5110.4
C2—O3—H3O109.5O2—C6—C1111.5 (2)
C3—O4—H4O109.5O2—C6—H6A109.3
C4—O5—H5O109.5C1—C6—H6A109.3
C7—O6—C5117.35 (18)O2—C6—H6B109.3
C13—N1—C14118.3 (2)C1—C6—H6B109.3
O1—C1—C6107.3 (2)H6A—C6—H6B108.0
O1—C1—C2109.09 (19)C12—C7—O6124.5 (2)
C6—C1—C2111.9 (2)C12—C7—C8121.0 (2)
O1—C1—H1109.5O6—C7—C8114.5 (2)
C6—C1—H1109.5C9—C8—C7119.5 (2)
C2—C1—H1109.5C9—C8—H8120.2
O3—C2—C3111.0 (2)C7—C8—H8120.2
O3—C2—C1110.6 (2)C8—C9—C10120.5 (2)
C3—C2—C1110.17 (18)C8—C9—H9119.7
O3—C2—H2108.3C10—C9—H9119.7
C3—C2—H2108.3C9—C10—C11119.2 (2)
C1—C2—H2108.3C9—C10—C13121.3 (2)
O4—C3—C2105.5 (2)C11—C10—C13119.5 (2)
O4—C3—C4111.1 (2)C12—C11—C10120.5 (2)
C2—C3—C4111.3 (2)C12—C11—H11119.8
O4—C3—H3109.6C10—C11—H11119.8
C2—C3—H3109.6C7—C12—C11119.2 (2)
C4—C3—H3109.6C7—C12—H12120.4
O5—C4—C5110.4 (2)C11—C12—H12120.4
O5—C4—C3109.7 (2)N1—C13—C10122.6 (2)
C5—C4—C3108.34 (19)N1—C13—H13118.7
O5—C4—H4109.5C10—C13—H13118.7
C5—C4—H4109.5N1—C14—H14A109.5
C3—C4—H4109.5N1—C14—H14B109.5
O1—C5—O6107.48 (19)H14A—C14—H14B109.5
O1—C5—C4110.26 (19)N1—C14—H14C109.5
O6—C5—C4107.84 (19)H14A—C14—H14C109.5
O1—C5—H5110.4H14B—C14—H14C109.5
C5—O1—C1—C6175.0 (2)O5—C4—C5—O663.7 (2)
C5—O1—C1—C263.6 (2)C3—C4—C5—O6176.21 (19)
O1—C1—C2—O3178.37 (19)O1—C1—C6—O266.7 (3)
C6—C1—C2—O363.1 (3)C2—C1—C6—O2173.71 (19)
O1—C1—C2—C355.3 (3)C5—O6—C7—C1221.4 (4)
C6—C1—C2—C3173.8 (2)C5—O6—C7—C8157.8 (2)
O3—C2—C3—O453.9 (2)C12—C7—C8—C90.4 (4)
C1—C2—C3—O468.9 (2)O6—C7—C8—C9179.6 (2)
O3—C2—C3—C4174.57 (19)C7—C8—C9—C101.2 (4)
C1—C2—C3—C451.7 (3)C8—C9—C10—C110.5 (4)
O4—C3—C4—O555.8 (3)C8—C9—C10—C13178.6 (2)
C2—C3—C4—O5173.1 (2)C9—C10—C11—C121.0 (4)
O4—C3—C4—C564.8 (3)C13—C10—C11—C12179.9 (3)
C2—C3—C4—C552.6 (3)O6—C7—C12—C11178.0 (3)
C1—O1—C5—O6176.31 (17)C8—C7—C12—C111.1 (4)
C1—O1—C5—C466.4 (2)C10—C11—C12—C71.8 (4)
C7—O6—C5—O190.4 (2)C14—N1—C13—C10175.7 (3)
C7—O6—C5—C4150.8 (2)C9—C10—C13—N115.4 (4)
O5—C4—C5—O1179.22 (19)C11—C10—C13—N1165.5 (3)
C3—C4—C5—O159.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.822.022.742 (3)147
O3—H3O···O2ii0.822.142.942 (3)165
O4—H4O···O2iii0.822.022.824 (3)167
O5—H5O···N1iv0.821.912.723 (3)170
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H19NO6
Mr297.30
Crystal system, space groupMonoclinic, P21
Temperature (K)292
a, b, c (Å)6.721 (4), 7.751 (3), 14.119 (4)
β (°) 91.46 (3)
V3)735.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.48 × 0.46 × 0.44
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1479, 1469, 1325
Rint0.004
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.09
No. of reflections1469
No. of parameters195
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.822.022.742 (3)146.7
O3—H3O···O2ii0.822.142.942 (3)164.7
O4—H4O···O2iii0.822.022.824 (3)166.7
O5—H5O···N1iv0.821.912.723 (3)169.6
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationChen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893–1897.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.  Google Scholar
First citationSha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 21–27.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. J., Hu, C., Li, Y. & Yin, S. F. (2008). Chin. J. Org. Chem. 28, 899–902.  CAS Google Scholar
First citationZhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem. 26, 1264–1267.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds