organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­oxy­phen­yl)-3-[2-(2-meth­oxy­phen­yl)eth­yl]-1H-1,2,4-triazol-5(4H)-one

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bThe Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 11 January 2009; accepted 22 January 2009; online 31 January 2009)

The title compound, C18H19N3O3, is a biologically active triazole derivative. The five-membered ring is oriented with respect to the six-membered rings at dihedral angles of 51.59 (4) and 61.37 (4)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen-bond inter­actions between centrosymmetrically related mol­ecules [the dihedral angle between the benzene rings is 47.44 (5)°].

Related literature

For the biological activities of triazole derivatives, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574-578.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339-1341.]); Paulvannan et al. (2000[Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218-223.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]). For related structures, see: Öztürk et al. (2004a[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.],b[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.]). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O3

  • Mr = 325.36

  • Monoclinic, P 21 /c

  • a = 12.5396 (19) Å

  • b = 9.1840 (14) Å

  • c = 14.041 (2) Å

  • β = 96.613 (3)°

  • V = 1606.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.50 × 0.50 × 0.50 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8654 measured reflections

  • 3278 independent reflections

  • 2631 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.01

  • 3278 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.913 (13) 1.870 (13) 2.7787 (12) 172.7 (12)
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the —N—CS unit (Omar et al., 1986). We are interested in the synthesis and biological activity of aryloxyacetyl hydrazide derivatives and report here the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal structure of the title molecule, the bond lengths and angles are within normal range and comparable with those observed in related structures (Öztürk et al., 2004a,b). In the triazole ring, the N3C11 (1.2970 (14) Å) bond shows double bond character. The rings A (N1—N3/ C1/ C2), B (C5—C10) and C (C12—C17) are planar and the dihedral angles between them are A/B = 78.11 (3)°, A/C = 56.04 (3)° and B/C = 33.23 (3)°. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) generating a ring of graph-set R22(8) (Etter, 1990; Bernstein et al., 1995).

Related literature top

For the biological activities of triazole derivatives, see: Demirbas et al. (2002); Holla et al. (1998); Omar et al. (1986); Paulvannan et al. (2000); Turan-Zitouni et al. (1999); Kritsanida et al. (2002). For related structures, see: Öztürk et al. (2004a,b). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The synthesis of the title compound was carried out by refluxing a solution of 4-(4-methoxyphenyl)-1-(3-(2-methoxyphenyl)propanoyl)semicarbazide (3.43 g, 10 mmol) in 2M NaOH for 5 h. Single crystals suitable for X-ray measurements were obtained on slow evaporation of an aqeous ethanol solution at room temperature (yield: 84%; m.p. 431–432 K).

Refinement top

H atoms bonded to C atoms were included in calculated positions and refined using the riding model approximation, with C—H = 0.95-0.99 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. Atom H3N was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dotted lines.
4-(4-Methoxyphenyl)-3-[2-(2-methoxyphenyl)ethyl]-1H-1,2,4-triazol- 5(4H)-one top
Crystal data top
C18H19N3O3F(000) = 688
Mr = 325.36Dx = 1.345 Mg m3
Monoclinic, P21/cMelting point: 431(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5396 (19) ÅCell parameters from 975 reflections
b = 9.1840 (14) Åθ = 2.7–26.3°
c = 14.041 (2) ŵ = 0.09 mm1
β = 96.613 (3)°T = 100 K
V = 1606.3 (4) Å3Irregular, colourless
Z = 40.50 × 0.50 × 0.50 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2631 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ϕ and ω scansh = 1514
8654 measured reflectionsk = 711
3278 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H19N3O3V = 1606.3 (4) Å3
Mr = 325.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5396 (19) ŵ = 0.09 mm1
b = 9.1840 (14) ÅT = 100 K
c = 14.041 (2) Å0.50 × 0.50 × 0.50 mm
β = 96.613 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2631 reflections with I > 2σ(I)
8654 measured reflectionsRint = 0.031
3278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
3278 reflectionsΔρmin = 0.17 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48159 (6)0.03096 (9)0.13337 (5)0.0255 (2)
O21.08680 (6)0.01642 (9)0.16392 (5)0.0249 (2)
O30.62644 (6)0.09499 (10)0.58898 (5)0.0306 (2)
N10.65632 (7)0.02461 (11)0.20442 (6)0.0205 (2)
N20.72808 (7)0.09381 (11)0.07470 (6)0.0227 (2)
N30.62158 (7)0.05346 (11)0.05209 (7)0.0224 (2)
H3N0.5916 (10)0.0520 (14)0.0104 (9)0.029 (3)*
C10.74701 (9)0.07600 (12)0.16673 (8)0.0210 (3)
C20.57538 (9)0.01011 (13)0.12919 (8)0.0209 (3)
C30.85367 (9)0.09907 (14)0.22308 (8)0.0249 (3)
H3A0.90010.15480.18370.030*
H3B0.84420.15790.28060.030*
C40.90982 (9)0.04491 (14)0.25474 (8)0.0260 (3)
H4A0.86210.10230.29190.031*
H4B0.97620.02300.29760.031*
C50.93810 (8)0.13522 (13)0.17195 (7)0.0224 (3)
C61.02928 (9)0.10111 (13)0.12649 (7)0.0209 (3)
C71.05663 (9)0.18328 (13)0.05035 (8)0.0226 (3)
H71.11840.15910.02020.027*
C80.99314 (9)0.30150 (13)0.01822 (9)0.0262 (3)
H81.01220.35890.03350.031*
C90.90262 (9)0.33607 (14)0.06091 (9)0.0284 (3)
H90.85880.41600.03810.034*
C100.87625 (9)0.25331 (13)0.13719 (8)0.0264 (3)
H100.81410.27800.16660.032*
C111.17827 (9)0.05778 (13)0.11798 (8)0.0252 (3)
H11A1.15590.07690.04990.038*
H11B1.21040.14600.14840.038*
H11C1.23120.02120.12420.038*
C120.64536 (8)0.00320 (13)0.30338 (8)0.0202 (3)
C130.62172 (8)0.14267 (13)0.33266 (8)0.0232 (3)
H130.61030.21920.28710.028*
C140.61483 (9)0.16956 (14)0.42864 (8)0.0260 (3)
H140.59780.26460.44900.031*
C150.63274 (8)0.05796 (14)0.49543 (8)0.0236 (3)
C160.65578 (9)0.08137 (14)0.46578 (8)0.0256 (3)
H160.66840.15780.51130.031*
C170.66031 (9)0.10809 (13)0.36918 (8)0.0251 (3)
H170.67380.20400.34820.030*
C180.64879 (10)0.01663 (16)0.65935 (8)0.0344 (3)
H18A0.60170.10020.64280.052*
H18B0.63620.02090.72240.052*
H18C0.72390.04710.66100.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (4)0.0342 (5)0.0238 (4)0.0022 (3)0.0042 (3)0.0020 (4)
O20.0212 (4)0.0306 (5)0.0238 (4)0.0073 (3)0.0060 (3)0.0039 (4)
O30.0274 (5)0.0434 (6)0.0213 (4)0.0008 (4)0.0043 (3)0.0082 (4)
N10.0190 (5)0.0238 (5)0.0192 (5)0.0008 (4)0.0046 (4)0.0017 (4)
N20.0199 (5)0.0247 (5)0.0238 (5)0.0026 (4)0.0041 (4)0.0012 (4)
N30.0199 (5)0.0281 (6)0.0193 (5)0.0018 (4)0.0029 (4)0.0001 (4)
C10.0223 (6)0.0192 (6)0.0226 (6)0.0008 (5)0.0068 (5)0.0027 (5)
C20.0215 (6)0.0196 (6)0.0219 (6)0.0022 (5)0.0040 (5)0.0015 (5)
C30.0223 (6)0.0308 (7)0.0223 (6)0.0062 (5)0.0058 (5)0.0052 (5)
C40.0190 (6)0.0409 (8)0.0181 (5)0.0052 (5)0.0018 (4)0.0032 (5)
C50.0183 (6)0.0277 (6)0.0204 (5)0.0006 (5)0.0008 (4)0.0076 (5)
C60.0187 (6)0.0232 (6)0.0199 (5)0.0011 (5)0.0018 (4)0.0034 (5)
C70.0199 (6)0.0254 (7)0.0222 (6)0.0017 (5)0.0017 (4)0.0043 (5)
C80.0268 (6)0.0235 (6)0.0274 (6)0.0042 (5)0.0010 (5)0.0002 (5)
C90.0244 (6)0.0227 (6)0.0365 (7)0.0036 (5)0.0031 (5)0.0026 (6)
C100.0200 (6)0.0285 (7)0.0305 (6)0.0025 (5)0.0013 (5)0.0092 (6)
C110.0203 (6)0.0290 (7)0.0269 (6)0.0054 (5)0.0056 (5)0.0001 (5)
C120.0164 (5)0.0249 (6)0.0200 (6)0.0015 (5)0.0043 (4)0.0010 (5)
C130.0185 (6)0.0230 (6)0.0280 (6)0.0003 (5)0.0018 (5)0.0025 (5)
C140.0216 (6)0.0254 (6)0.0307 (6)0.0020 (5)0.0024 (5)0.0065 (5)
C150.0153 (6)0.0336 (7)0.0222 (6)0.0039 (5)0.0037 (4)0.0064 (5)
C160.0288 (6)0.0265 (7)0.0222 (6)0.0030 (5)0.0052 (5)0.0036 (5)
C170.0294 (6)0.0219 (6)0.0252 (6)0.0011 (5)0.0074 (5)0.0010 (5)
C180.0325 (7)0.0503 (9)0.0207 (6)0.0115 (6)0.0048 (5)0.0026 (6)
Geometric parameters (Å, º) top
O1—C21.2429 (13)C7—H70.9500
O2—C61.3690 (14)C8—C91.3802 (16)
O2—C111.4305 (13)C8—H80.9500
O3—C151.3679 (13)C9—C101.3840 (17)
O3—C181.4290 (16)C9—H90.9500
N1—C21.3844 (14)C10—H100.9500
N1—C11.3909 (14)C11—H11A0.9800
N1—C121.4348 (14)C11—H11B0.9800
N2—C11.2970 (14)C11—H11C0.9800
N2—N31.3870 (13)C12—C171.3761 (16)
N3—C21.3455 (14)C12—C131.3877 (17)
N3—H3N0.913 (13)C13—C141.3825 (16)
C1—C31.4886 (15)C13—H130.9500
C3—C41.5394 (17)C14—C151.3899 (17)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.3862 (17)
C4—C51.5033 (16)C16—C171.3859 (16)
C4—H4A0.9900C16—H160.9500
C4—H4B0.9900C17—H170.9500
C5—C101.3888 (16)C18—H18A0.9800
C5—C61.4074 (15)C18—H18B0.9800
C6—C71.3836 (16)C18—H18C0.9800
C7—C81.3906 (17)
C6—O2—C11116.79 (8)C7—C8—H8119.8
C15—O3—C18117.21 (10)C8—C9—C10119.44 (11)
C2—N1—C1107.58 (9)C8—C9—H9120.3
C2—N1—C12125.32 (9)C10—C9—H9120.3
C1—N1—C12127.05 (9)C9—C10—C5121.82 (11)
C1—N2—N3104.79 (9)C9—C10—H10119.1
C2—N3—N2112.79 (9)C5—C10—H10119.1
C2—N3—H3N126.9 (8)O2—C11—H11A109.5
N2—N3—H3N120.1 (8)O2—C11—H11B109.5
N2—C1—N1110.97 (10)H11A—C11—H11B109.5
N2—C1—C3124.18 (10)O2—C11—H11C109.5
N1—C1—C3124.75 (10)H11A—C11—H11C109.5
O1—C2—N3128.70 (10)H11B—C11—H11C109.5
O1—C2—N1127.42 (10)C17—C12—C13120.26 (11)
N3—C2—N1103.87 (9)C17—C12—N1119.81 (10)
C1—C3—C4112.60 (10)C13—C12—N1119.92 (10)
C1—C3—H3A109.1C14—C13—C12119.55 (11)
C4—C3—H3A109.1C14—C13—H13120.2
C1—C3—H3B109.1C12—C13—H13120.2
C4—C3—H3B109.1C13—C14—C15120.17 (11)
H3A—C3—H3B107.8C13—C14—H14119.9
C5—C4—C3113.04 (9)C15—C14—H14119.9
C5—C4—H4A109.0O3—C15—C16123.70 (11)
C3—C4—H4A109.0O3—C15—C14116.22 (11)
C5—C4—H4B109.0C16—C15—C14120.08 (11)
C3—C4—H4B109.0C17—C16—C15119.39 (11)
H4A—C4—H4B107.8C17—C16—H16120.3
C10—C5—C6117.67 (11)C15—C16—H16120.3
C10—C5—C4122.05 (10)C12—C17—C16120.52 (11)
C6—C5—C4120.28 (10)C12—C17—H17119.7
O2—C6—C7124.06 (10)C16—C17—H17119.7
O2—C6—C5114.90 (10)O3—C18—H18A109.5
C7—C6—C5121.04 (11)O3—C18—H18B109.5
C6—C7—C8119.53 (11)H18A—C18—H18B109.5
C6—C7—H7120.2O3—C18—H18C109.5
C8—C7—H7120.2H18A—C18—H18C109.5
C9—C8—C7120.49 (12)H18B—C18—H18C109.5
C9—C8—H8119.8
C1—N2—N3—C20.48 (13)O2—C6—C7—C8179.48 (10)
N3—N2—C1—N10.33 (12)C5—C6—C7—C80.05 (17)
N3—N2—C1—C3176.87 (11)C6—C7—C8—C90.81 (17)
C2—N1—C1—N20.10 (13)C7—C8—C9—C100.98 (17)
C12—N1—C1—N2177.68 (10)C8—C9—C10—C50.40 (18)
C2—N1—C1—C3176.61 (11)C6—C5—C10—C90.34 (17)
C12—N1—C1—C35.81 (18)C4—C5—C10—C9179.98 (11)
N2—N3—C2—O1179.17 (11)C2—N1—C12—C17117.56 (13)
N2—N3—C2—N10.41 (12)C1—N1—C12—C1759.61 (15)
C1—N1—C2—O1178.97 (11)C2—N1—C12—C1363.64 (15)
C12—N1—C2—O11.34 (19)C1—N1—C12—C13119.18 (13)
C1—N1—C2—N30.19 (12)C17—C12—C13—C140.94 (17)
C12—N1—C2—N3177.45 (10)N1—C12—C13—C14177.85 (10)
N2—C1—C3—C4105.59 (13)C12—C13—C14—C150.76 (17)
N1—C1—C3—C470.47 (14)C18—O3—C15—C162.24 (16)
C1—C3—C4—C564.75 (13)C18—O3—C15—C14177.56 (10)
C3—C4—C5—C10100.59 (13)C13—C14—C15—O3178.71 (10)
C3—C4—C5—C679.05 (13)C13—C14—C15—C161.10 (17)
C11—O2—C6—C72.34 (15)O3—C15—C16—C17179.96 (10)
C11—O2—C6—C5178.10 (9)C14—C15—C16—C170.26 (17)
C10—C5—C6—O2179.92 (9)C13—C12—C17—C162.32 (17)
C4—C5—C6—O20.27 (15)N1—C12—C17—C16176.47 (10)
C10—C5—C6—C70.51 (16)C15—C16—C17—C121.96 (17)
C4—C5—C6—C7179.84 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.913 (13)1.870 (13)2.7787 (12)172.7 (12)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O3
Mr325.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.5396 (19), 9.1840 (14), 14.041 (2)
β (°) 96.613 (3)
V3)1606.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.50 × 0.50
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8654, 3278, 2631
Rint0.031
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.01
No. of reflections3278
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.913 (13)1.870 (13)2.7787 (12)172.7 (12)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574–578.  CrossRef PubMed CAS Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds