organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-(2,4-Di­chloro­phen­yl)[2-hydr­­oxy-6-(meth­oxy­imino)cyclo­hex-1-en­yl]methanone

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and bNingbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
*Correspondence e-mail: jwzou@nit.net.cn

(Received 5 December 2008; accepted 15 January 2009; online 23 January 2009)

The title compound, C14H13Cl2NO3, was obtained as the product of an attempted synthesis of herbicidally active compounds containing oxime ether and cyclo­hexenone groups. In the crystal structure, the mol­ecule adopts an endocyclic enol tautomeric form and the cyclo­hexene ring adopts a distorted envelope form. The oxime ether group has an E configuration, with the meth­oxy group anti to the ortho-chloro substitutent. Intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds are found in the crystal structure.

Related literature

For the structure of 5-chloro-2-methyl­thio-3H-indole-3-one 3-oxime O-methyl ether, see: Beddoes et al. (1992[Beddoes, R. L., Kearney, T., Jackson, A. & Joule, J. A. (1992). Acta Cryst. C48, 1444-1446.]). For theoretical studies on the tautomerism of benzoyl­cyclo­hexane-1,3-dione and its derivatives, see: Huang et al. (2002[Huang, M.-L., Zou, J.-W., Yang, D.-Y., Ning, B.-Z., Shang, Z.-C. & Yu, Q.-S. (2002). J. Mol. Struct. (THEOCHEM), 589-590, 321-328.]). For the potential herbicidal property of the title compound and related compounds, see: Knudsen (1988[Knudsen, C. G. (1988). US Patent 4 775 411.]). For the chemistry of 2-acyl­cyclo­alkane-1,3-diones, see: Rubinov et al. (1999[Rubinov, D. B., Rubinova, I. L. & Akhrem, A. A. (1999). Chem. Rev. 99, 1047-1065.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO3

  • Mr = 314.15

  • Triclinic, [P \overline 1]

  • a = 8.4096 (17) Å

  • b = 8.9944 (18) Å

  • c = 11.740 (2) Å

  • α = 68.38 (3)°

  • β = 74.50 (3)°

  • γ = 62.32 (3)°

  • V = 726.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 (2) K

  • 0.68 × 0.34 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.748, Tmax = 0.903

  • 6630 measured reflections

  • 3247 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.08

  • 3247 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H10⋯O1 0.91 (3) 1.64 (3) 2.485 (2) 152 (3)
C4—H1⋯O1i 0.99 (2) 2.51 (2) 3.347 (3) 143 (2)
C2—H3⋯O2ii 0.91 (4) 2.57 (3) 3.438 (3) 160 (3)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Acylcycloalkanone derivatives, either natural or synthetic products, have been widely studied because of their versatile biological activity (Rubinov et al. 1999). The title compound, which was reported previously as a potential herbicide (Knudsen, 1988), was synthesized using 3-chloro-2-(2,4-dichlorobenzoyl)cyclohex-2-enone and methoxyamine hydrochloride as reactants and triethylamine as a catalyst. Herin we report its crystal structure with an attempt to understand better the structure-activity relationship of this class of compounds.

The title compound consists of 2,4-dichlorobenzoyl and cyclohexenone oxime O-methyl ether moieties. It has several possible tautomers in solution due to the existence of a 1,3-dione structure (Huang et al. 2002). The title molecule adopts an endocyclic enol tautomeric form in the crystal structure, i.e. the carbonyl group of the cyclohexenone unit is enolized. The cyclohexene ring adopts a distorted envelope form. The oxime ether is in an E configuration, with the methoxy group being anti to the substitutent group at the C-11 position (Fig. 1). The bond length of C6=N1 is 1.284 (3) Å and the C=N—O angle is 110.89 (17)°, which is close to the value in 5-chloro-2-methylthio-3H-indole-3-one 3-oxime O-methyl ether, (111.3 (5)°) (Beddoes et al., 1992), showing that the C6=N1 bond is conjugated with the C8=C11 and C9=O1 bonds.

There is a strong intramolecular hydrogen bond, O2—H10···O1 (Table 1) and, as a result, a pseudo-six-membered ring (C8—O2—H10···O1—C9—C11) is formed in the structure (Fig. 1). The torsional angle of O1—C9—C8—C11 is 11.9 (3)°. In addition, two weak intermolecular C—H···O hydrogen bonding contacts, which form columns along the b axis, are found in the packing structure (Table 1 and Fig. 2).

Related literature top

For the structure of 5-chloro-2-methylthio-3H-indole-3-one 3-oxime O-methyl ether, see: Beddoes et al. (1992). For theoretical studies on tautomerism of benzoylcyclohexane-1,3-dione and its derivatives, see: Huang et al. (2002). For the potential herbicidal property of the title compound and related compounds, see: Knudsen (1988). For the chemistry of 2-acylcycloalkane-1,3-diones, see: Rubinov et al. (1999).

Experimental top

A mixture of 2-(2,4-dichlorobenzoyl)cyclohexen-1,3-dione (0.57 g, 2 mmol), methoxyamine hydrochloride (0.18 g, 2.2 mmol) and anhydrous sodium acetate (0.2 g, 2.4 mmol) was stirred in methanol (30 ml) at room temperature for 16 h. The mixture was diluted with 100 ml of water and extracted with 30 ml e thyl acetate three times. The combined organic layer was dried with anhydrous magnesium sulfate and purified by column chromatography (ethyl acetate:petroleum ether = 1:12) to afford the title compound (70% yield). A crystal suitable for X-ray analysis was obtained by recrystallization of the product with acetone/pentane (1:10) at room temperature over a period of 3 d.

Refinement top

All H atoms were located in difference Fourier maps and refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title complex with atom numbering scheme. Thermal ellipsoids are shown at 30% probability level.
[Figure 2] Fig. 2. One-dimensional supramolecular structure showing intermolecular C—H···O hydrogen bonding contacts.
(E)-(2,4-Dichlorophenyl)[2-hydroxy-6-(methoxyimino)cyclohex-1- enyl]methanone top
Crystal data top
C14H13Cl2NO3Z = 2
Mr = 314.15F(000) = 324
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4096 (17) ÅCell parameters from 3247 reflections
b = 8.9944 (18) Åθ = 3.2–27.5°
c = 11.740 (2) ŵ = 0.45 mm1
α = 68.38 (3)°T = 298 K
β = 74.50 (3)°Block, green
γ = 62.32 (3)°0.68 × 0.34 × 0.23 mm
V = 726.0 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.40 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
k = 1110
Tmin = 0.748, Tmax = 0.903l = 1515
6630 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.0941P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H13Cl2NO3γ = 62.32 (3)°
Mr = 314.15V = 726.0 (3) Å3
Triclinic, P1Z = 2
a = 8.4096 (17) ÅMo Kα radiation
b = 8.9944 (18) ŵ = 0.45 mm1
c = 11.740 (2) ÅT = 298 K
α = 68.38 (3)°0.68 × 0.34 × 0.23 mm
β = 74.50 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2162 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.903Rint = 0.021
6630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
3247 reflectionsΔρmin = 0.40 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20742 (14)0.71882 (10)0.43507 (6)0.0984 (3)
Cl20.28869 (13)1.27753 (12)0.43224 (9)0.1098 (3)
O10.4465 (2)0.7560 (2)0.09971 (15)0.0676 (4)
O20.3124 (2)0.5952 (2)0.05046 (15)0.0658 (4)
H100.389 (4)0.641 (4)0.050 (3)0.099 (10)*
O30.25125 (19)1.1694 (2)0.24393 (17)0.0686 (5)
N10.0704 (2)1.0779 (2)0.19908 (16)0.0551 (4)
C10.2934 (3)1.1452 (3)0.3538 (3)0.0689 (6)
C20.3365 (3)1.1861 (3)0.2287 (3)0.0677 (7)
H30.361 (4)1.281 (4)0.184 (3)0.087 (9)*
C30.2551 (4)1.0015 (3)0.4191 (3)0.0702 (7)
H60.231 (4)0.968 (4)0.507 (3)0.089 (9)*
C40.3381 (3)1.0831 (3)0.1661 (2)0.0583 (5)
H10.370 (3)1.110 (3)0.076 (2)0.064 (7)*
C50.2563 (3)0.9004 (3)0.3541 (2)0.0604 (5)
C60.0470 (3)0.9302 (3)0.19137 (19)0.0511 (5)
C70.2943 (2)0.9405 (3)0.22713 (19)0.0510 (5)
C80.1559 (3)0.6921 (3)0.09904 (19)0.0539 (5)
C90.2954 (3)0.8347 (3)0.15450 (19)0.0518 (5)
C100.0020 (3)0.6524 (4)0.1021 (3)0.0688 (7)
H80.056 (4)0.718 (4)0.021 (3)0.113 (11)*
H110.041 (4)0.528 (4)0.105 (3)0.108 (10)*
C110.1366 (3)0.8193 (3)0.14735 (18)0.0485 (5)
C120.1359 (4)0.6906 (4)0.2117 (3)0.0826 (8)
H70.244 (4)0.675 (4)0.210 (3)0.100 (9)*
H140.080 (5)0.606 (5)0.301 (4)0.139 (13)*
C130.1984 (3)0.8748 (4)0.2142 (3)0.0746 (7)
H20.259 (4)0.888 (4)0.289 (3)0.086 (9)*
H150.275 (5)0.953 (5)0.131 (4)0.143 (14)*
C140.2681 (4)1.3347 (3)0.2447 (3)0.0700 (7)
H40.178 (4)1.311 (4)0.295 (3)0.101 (10)*
H50.386 (4)1.389 (4)0.281 (3)0.085 (8)*
H90.252 (4)1.405 (4)0.157 (3)0.096 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1770 (9)0.0882 (5)0.0587 (4)0.0887 (6)0.0179 (4)0.0028 (3)
Cl20.1302 (7)0.1061 (6)0.1376 (8)0.0655 (6)0.0103 (6)0.0629 (6)
O10.0478 (9)0.0763 (11)0.0799 (11)0.0253 (8)0.0041 (8)0.0315 (9)
O20.0621 (10)0.0652 (10)0.0717 (10)0.0211 (9)0.0022 (8)0.0318 (9)
O30.0475 (8)0.0587 (9)0.1003 (12)0.0155 (7)0.0036 (8)0.0352 (9)
N10.0437 (9)0.0536 (10)0.0654 (11)0.0154 (8)0.0069 (8)0.0198 (9)
C10.0621 (14)0.0655 (14)0.0918 (19)0.0265 (12)0.0169 (13)0.0299 (14)
C20.0538 (13)0.0547 (13)0.098 (2)0.0278 (11)0.0148 (12)0.0138 (13)
C30.0854 (18)0.0705 (16)0.0681 (16)0.0395 (14)0.0169 (13)0.0183 (13)
C40.0441 (11)0.0593 (13)0.0698 (14)0.0252 (10)0.0098 (10)0.0090 (11)
C50.0694 (14)0.0562 (12)0.0603 (13)0.0317 (11)0.0142 (10)0.0090 (10)
C60.0455 (11)0.0521 (11)0.0573 (11)0.0198 (9)0.0103 (9)0.0146 (9)
C70.0388 (10)0.0511 (11)0.0605 (12)0.0163 (9)0.0125 (9)0.0113 (10)
C80.0528 (12)0.0514 (12)0.0548 (11)0.0165 (10)0.0091 (9)0.0167 (10)
C90.0475 (11)0.0495 (11)0.0516 (11)0.0183 (9)0.0069 (9)0.0085 (9)
C100.0619 (14)0.0684 (15)0.0903 (18)0.0237 (12)0.0170 (13)0.0361 (15)
C110.0457 (11)0.0484 (11)0.0490 (10)0.0169 (9)0.0096 (8)0.0117 (9)
C120.0660 (16)0.0835 (19)0.121 (3)0.0422 (15)0.0002 (16)0.0455 (19)
C130.0544 (14)0.0774 (17)0.108 (2)0.0333 (13)0.0044 (15)0.0450 (17)
C140.0738 (17)0.0558 (14)0.0770 (17)0.0174 (13)0.0090 (15)0.0272 (14)
Geometric parameters (Å, º) top
Cl1—C51.735 (2)C6—C111.473 (3)
Cl2—C11.735 (3)C6—C131.500 (3)
O1—C91.262 (2)C7—C91.490 (3)
O2—C81.310 (3)C8—C111.383 (3)
O2—H100.91 (3)C8—C101.483 (3)
O3—N11.413 (2)C9—C111.432 (3)
O3—C141.429 (3)C10—C121.509 (4)
N1—C61.284 (3)C10—H81.03 (3)
C1—C21.366 (4)C10—H111.00 (3)
C1—C31.373 (4)C12—C131.497 (4)
C2—C41.373 (3)C12—H70.99 (3)
C2—H30.90 (3)C12—H141.12 (4)
C3—C51.381 (3)C13—H20.91 (3)
C3—H60.96 (3)C13—H151.13 (4)
C4—C71.384 (3)C14—H40.99 (3)
C4—H10.99 (2)C14—H50.94 (3)
C5—C71.382 (3)C14—H91.00 (3)
C8—O2—H10104.4 (19)C11—C9—C7122.91 (18)
N1—O3—C14107.48 (18)C8—C10—C12110.6 (2)
C6—N1—O3110.89 (17)C8—C10—H8112.0 (19)
C2—C1—C3121.8 (2)C12—C10—H8111.5 (18)
C2—C1—Cl2119.0 (2)C8—C10—H11112.8 (19)
C3—C1—Cl2119.2 (2)C12—C10—H11108.9 (18)
C1—C2—C4119.2 (2)H8—C10—H11101 (2)
C1—C2—H3122.8 (18)C8—C11—C9118.71 (18)
C4—C2—H3118.0 (18)C8—C11—C6118.12 (18)
C1—C3—C5118.0 (2)C9—C11—C6123.15 (18)
C1—C3—H6122.7 (17)C13—C12—C10111.8 (3)
C5—C3—H6119.3 (17)C13—C12—H7107.1 (18)
C2—C4—C7121.2 (2)C10—C12—H7111.0 (17)
C2—C4—H1120.3 (14)C13—C12—H14105 (2)
C7—C4—H1118.5 (14)C10—C12—H14112 (2)
C3—C5—C7121.9 (2)H7—C12—H14109 (3)
C3—C5—Cl1118.64 (19)C12—C13—C6113.5 (2)
C7—C5—Cl1119.48 (17)C12—C13—H2110.8 (19)
N1—C6—C11116.84 (18)C6—C13—H2106.2 (18)
N1—C6—C13123.33 (19)C12—C13—H15102.1 (19)
C11—C6—C13119.61 (19)C6—C13—H15106 (2)
C5—C7—C4117.9 (2)H2—C13—H15118 (3)
C5—C7—C9123.08 (19)O3—C14—H4107.5 (19)
C4—C7—C9119.0 (2)O3—C14—H5105.9 (18)
O2—C8—C11122.27 (19)H4—C14—H5111 (2)
O2—C8—C10115.41 (19)O3—C14—H9108.2 (16)
C11—C8—C10122.29 (19)H4—C14—H9114 (3)
O1—C9—C11121.04 (19)H5—C14—H9110 (2)
O1—C9—C7116.05 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H10···O10.91 (3)1.64 (3)2.485 (2)152 (3)
C4—H1···O1i0.99 (2)2.51 (2)3.347 (3)143 (2)
C2—H3···O2ii0.91 (4)2.57 (3)3.438 (3)160 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO3
Mr314.15
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.4096 (17), 8.9944 (18), 11.740 (2)
α, β, γ (°)68.38 (3), 74.50 (3), 62.32 (3)
V3)726.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.68 × 0.34 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.748, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
6630, 3247, 2162
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.08
No. of reflections3247
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H10···O10.91 (3)1.64 (3)2.485 (2)152 (3)
C4—H1···O1i0.99 (2)2.51 (2)3.347 (3)143 (2)
C2—H3···O2ii0.91 (4)2.57 (3)3.438 (3)160 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y406042) and the Natural Science Foundation of Ningbo City (No. 2008A610068) for financial support.

References

First citationBeddoes, R. L., Kearney, T., Jackson, A. & Joule, J. A. (1992). Acta Cryst. C48, 1444–1446.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, M.-L., Zou, J.-W., Yang, D.-Y., Ning, B.-Z., Shang, Z.-C. & Yu, Q.-S. (2002). J. Mol. Struct. (THEOCHEM), 589–590, 321–328.  Web of Science CrossRef CAS Google Scholar
First citationKnudsen, C. G. (1988). US Patent 4 775 411.  Google Scholar
First citationRubinov, D. B., Rubinova, I. L. & Akhrem, A. A. (1999). Chem. Rev. 99, 1047–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds