metal-organic compounds
Poly[1-ethyl-3-methylimidazolium [tri-μ-chlorido-chromate(II)]]
aDepartment of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA, and bDepartment of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
*Correspondence e-mail: lisa.berreau@usu.edu
The title compound, {(C6H11N2)[CrCl3]}n, was generated via mixing of the ionic liquid 1-ethyl-3-methylimidazolium chloride with CrCl2 in ethanol. Crystals were obtained by a diffusion method. In the the anion forms one-dimensional chains of chloride-bridged Jahn–Teller distorted chromium(II) centers extending along the [100] direction. The imidazolium cations are positioned between these chains.
Related literature
For reference to this compound as a possible catalyst for the conversion of glucose to 5-hydroxymethylfurfural (HMF), see: Zhao et al. (2007). For the synthesis of the ammonium and tetramethylammonium analogs [NR4][CrCl3] (R = H, CH3), see Hardt & Streit (1970). For the crystal structures of [M][CrCl3], see: Bellitto et al. (1984) [M = N(CH3)4]; McPherson et al. (1972) (M = Cs); Crama et al. (1978) (M = Rb, Cs); Crama et al. (1979) (M = Rb); Crama & Zandbergen (1981) (M = Cs).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1999); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalMaker (Palmer, 2005).
Supporting information
10.1107/S1600536809002281/si2146sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002281/si2146Isup2.hkl
Under a N2 atmosphere, a solution of CrCl2 (23 mg, 0.19 mmol) in ethanol (2 ml) was added to solid 1-ethyl-3-methylimidazolium chloride (23 mg, 0.16 mmol). The resulting teal colored solution was stirred at ambient temperature until all of the solid had dissolved. Addition of ethyl acetate (2 ml), followed by diffusion of Et2O, produced pale yellow crystals suitable for X-ray analysis.
Data collection: COLLECT (Nonius, 1999); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalMaker (Palmer, 2005).(C6H11N2)[CrCl3] | F(000) = 544 |
Mr = 269.52 | Dx = 1.725 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6615 (1) Å | Cell parameters from 8584 reflections |
b = 16.4317 (4) Å | θ = 1.0–27.5° |
c = 9.5258 (2) Å | µ = 1.82 mm−1 |
β = 95.6881 (14)° | T = 150 K |
V = 1037.56 (4) Å3 | Prism, yellow |
Z = 4 | 0.25 × 0.20 × 0.15 mm |
Nonius KappaCCD diffractometer | 2384 independent reflections |
Radiation source: fine-focus sealed tube | 2082 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan [DENZO-SMN (Otwinowski & Minor, 1997) with scaling algorithm from Fox & Holmes (1966)] | h = −8→8 |
Tmin = 0.659, Tmax = 0.772 | k = −20→21 |
4056 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | All H-atom parameters refined |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0236P)2 + 0.6211P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2384 reflections | Δρmax = 0.42 e Å−3 |
154 parameters | Δρmin = −0.48 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0064 (9) |
(C6H11N2)[CrCl3] | V = 1037.56 (4) Å3 |
Mr = 269.52 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 6.6615 (1) Å | µ = 1.82 mm−1 |
b = 16.4317 (4) Å | T = 150 K |
c = 9.5258 (2) Å | 0.25 × 0.20 × 0.15 mm |
β = 95.6881 (14)° |
Nonius KappaCCD diffractometer | 2384 independent reflections |
Absorption correction: multi-scan [DENZO-SMN (Otwinowski & Minor, 1997) with scaling algorithm from Fox & Holmes (1966)] | 2082 reflections with I > 2σ(I) |
Tmin = 0.659, Tmax = 0.772 | Rint = 0.018 |
4056 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.42 e Å−3 |
2384 reflections | Δρmin = −0.48 e Å−3 |
154 parameters |
Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.30848 (4) | 0.251150 (16) | 0.79201 (3) | 0.01432 (10) | |
Cl1 | 0.09238 (6) | 0.18418 (3) | 0.61278 (4) | 0.01959 (12) | |
Cl2 | 0.52336 (6) | 0.31399 (3) | 0.97636 (4) | 0.01856 (12) | |
Cl3 | 0.55581 (5) | 0.14110 (3) | 0.79810 (4) | 0.01695 (12) | |
N1 | 0.7020 (2) | 0.05812 (10) | 0.24223 (15) | 0.0209 (3) | |
N2 | 0.4931 (2) | 0.14965 (9) | 0.30051 (15) | 0.0191 (3) | |
C1 | 0.5869 (3) | 0.11968 (12) | 0.19414 (18) | 0.0198 (4) | |
C2 | 0.6805 (3) | 0.04791 (13) | 0.3837 (2) | 0.0301 (4) | |
C3 | 0.5517 (3) | 0.10515 (13) | 0.4202 (2) | 0.0281 (4) | |
C4 | 0.3515 (3) | 0.21791 (13) | 0.2924 (2) | 0.0243 (4) | |
C5 | 0.8379 (3) | 0.01037 (13) | 0.1611 (2) | 0.0269 (4) | |
C6 | 1.0520 (3) | 0.01492 (15) | 0.2275 (3) | 0.0339 (5) | |
H1 | 0.574 (3) | 0.1415 (13) | 0.104 (2) | 0.022 (5)* | |
H2 | 0.748 (4) | 0.0075 (16) | 0.435 (3) | 0.043 (7)* | |
H3 | 0.508 (4) | 0.1180 (16) | 0.506 (3) | 0.044 (7)* | |
H4A | 0.350 (5) | 0.2419 (19) | 0.206 (4) | 0.071 (10)* | |
H4B | 0.236 (5) | 0.1996 (19) | 0.309 (3) | 0.068 (9)* | |
H4C | 0.384 (4) | 0.2545 (18) | 0.356 (3) | 0.059 (9)* | |
H5A | 0.829 (4) | 0.0344 (15) | 0.067 (3) | 0.042 (7)* | |
H5B | 0.787 (4) | −0.0452 (16) | 0.156 (2) | 0.040 (6)* | |
H6A | 1.142 (4) | −0.0168 (17) | 0.176 (3) | 0.047 (7)* | |
H6B | 1.061 (3) | −0.0057 (16) | 0.319 (3) | 0.040 (7)* | |
H6C | 1.099 (4) | 0.0705 (19) | 0.240 (3) | 0.059 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.01154 (15) | 0.01684 (18) | 0.01412 (15) | 0.00097 (10) | −0.00098 (10) | −0.00138 (10) |
Cl1 | 0.0171 (2) | 0.0254 (3) | 0.0157 (2) | −0.00134 (16) | −0.00144 (15) | −0.00269 (16) |
Cl2 | 0.0179 (2) | 0.0211 (2) | 0.0160 (2) | −0.00030 (15) | −0.00131 (15) | −0.00306 (16) |
Cl3 | 0.0136 (2) | 0.0164 (2) | 0.0207 (2) | −0.00014 (14) | 0.00140 (15) | −0.00127 (15) |
N1 | 0.0225 (7) | 0.0204 (8) | 0.0203 (7) | −0.0013 (6) | 0.0042 (6) | 0.0004 (6) |
N2 | 0.0186 (7) | 0.0226 (8) | 0.0161 (7) | −0.0017 (6) | 0.0011 (5) | −0.0013 (6) |
C1 | 0.0210 (8) | 0.0225 (9) | 0.0161 (8) | −0.0027 (7) | 0.0021 (7) | −0.0006 (7) |
C2 | 0.0343 (10) | 0.0329 (12) | 0.0234 (9) | 0.0053 (9) | 0.0043 (8) | 0.0090 (9) |
C3 | 0.0303 (10) | 0.0373 (12) | 0.0172 (9) | 0.0022 (9) | 0.0043 (7) | 0.0039 (8) |
C4 | 0.0195 (9) | 0.0278 (11) | 0.0256 (10) | 0.0013 (8) | 0.0027 (7) | −0.0044 (9) |
C5 | 0.0284 (10) | 0.0215 (10) | 0.0321 (10) | −0.0001 (8) | 0.0087 (8) | −0.0030 (8) |
C6 | 0.0277 (11) | 0.0314 (13) | 0.0434 (13) | 0.0049 (9) | 0.0072 (9) | 0.0024 (10) |
Cr1—Cl2 | 2.3876 (5) | C2—H2 | 0.91 (3) |
Cr1—Cl1 | 2.3898 (5) | C3—H3 | 0.91 (3) |
Cr1—Cl3 | 2.4431 (5) | C4—H4A | 0.91 (3) |
Cr1—Cl3i | 2.4476 (5) | C4—H4B | 0.86 (3) |
N1—C1 | 1.323 (2) | C4—H4C | 0.86 (3) |
N1—C2 | 1.380 (2) | C5—C6 | 1.503 (3) |
N1—C5 | 1.473 (2) | C5—H5A | 0.97 (2) |
N2—C1 | 1.336 (2) | C5—H5B | 0.97 (3) |
N2—C3 | 1.378 (2) | C6—H6A | 0.96 (3) |
N2—C4 | 1.463 (3) | C6—H6B | 0.93 (3) |
C1—H1 | 0.93 (2) | C6—H6C | 0.97 (3) |
C2—C3 | 1.342 (3) | ||
Cl2—Cr1—Cl1 | 177.976 (19) | C2—C3—H3 | 131.2 (17) |
Cl2—Cr1—Cl3 | 87.073 (15) | N2—C3—H3 | 121.7 (17) |
Cl1—Cr1—Cl3 | 91.904 (16) | N2—C4—H4A | 109 (2) |
Cl2—Cr1—Cl3i | 91.906 (16) | N2—C4—H4B | 108 (2) |
Cl1—Cr1—Cl3i | 89.027 (15) | H4A—C4—H4B | 113 (3) |
Cl3—Cr1—Cl3i | 176.95 (2) | N2—C4—H4C | 112 (2) |
Cr1—Cl3—Cr1ii | 85.856 (13) | H4A—C4—H4C | 108 (3) |
C1—N1—C2 | 108.55 (16) | H4B—C4—H4C | 106 (3) |
C1—N1—C5 | 126.20 (16) | N1—C5—C6 | 111.08 (17) |
C2—N1—C5 | 125.20 (17) | N1—C5—H5A | 106.3 (14) |
C1—N2—C3 | 108.45 (16) | C6—C5—H5A | 109.7 (14) |
C1—N2—C4 | 126.18 (16) | N1—C5—H5B | 107.4 (14) |
C3—N2—C4 | 125.37 (15) | C6—C5—H5B | 112.2 (14) |
N1—C1—N2 | 108.52 (15) | H5A—C5—H5B | 110 (2) |
N1—C1—H1 | 127.8 (13) | C5—C6—H6A | 111.9 (15) |
N2—C1—H1 | 123.6 (13) | C5—C6—H6B | 110.2 (15) |
C3—C2—N1 | 107.38 (18) | H6A—C6—H6B | 107 (2) |
C3—C2—H2 | 131.7 (16) | C5—C6—H6C | 112.4 (17) |
N1—C2—H2 | 121.0 (16) | H6A—C6—H6C | 111 (2) |
C2—C3—N2 | 107.08 (16) | H6B—C6—H6C | 104 (2) |
Cl2—Cr1—Cl3—Cr1ii | −48.298 (16) | C5—N1—C2—C3 | 176.88 (18) |
Cl1—Cr1—Cl3—Cr1ii | 133.450 (13) | N1—C2—C3—N2 | 0.6 (2) |
C2—N1—C1—N2 | 0.4 (2) | C1—N2—C3—C2 | −0.4 (2) |
C5—N1—C1—N2 | −177.10 (16) | C4—N2—C3—C2 | 179.39 (18) |
C3—N2—C1—N1 | 0.0 (2) | C1—N1—C5—C6 | 121.0 (2) |
C4—N2—C1—N1 | −179.80 (17) | C2—N1—C5—C6 | −56.1 (3) |
C1—N1—C2—C3 | −0.7 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C6H11N2)[CrCl3] |
Mr | 269.52 |
Crystal system, space group | Monoclinic, P21/a |
Temperature (K) | 150 |
a, b, c (Å) | 6.6615 (1), 16.4317 (4), 9.5258 (2) |
β (°) | 95.6881 (14) |
V (Å3) | 1037.56 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.82 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan [DENZO-SMN (Otwinowski & Minor, 1997) with scaling algorithm from Fox & Holmes (1966)] |
Tmin, Tmax | 0.659, 0.772 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4056, 2384, 2082 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.064, 1.08 |
No. of reflections | 2384 |
No. of parameters | 154 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.42, −0.48 |
Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), CrystalMaker (Palmer, 2005).
Cr1—Cl2 | 2.3876 (5) | Cr1—Cl3 | 2.4431 (5) |
Cr1—Cl1 | 2.3898 (5) | Cr1—Cl3i | 2.4476 (5) |
Cl2—Cr1—Cl1 | 177.976 (19) | Cl1—Cr1—Cl3i | 89.027 (15) |
Cl2—Cr1—Cl3 | 87.073 (15) | Cl3—Cr1—Cl3i | 176.95 (2) |
Cl1—Cr1—Cl3 | 91.904 (16) | Cr1—Cl3—Cr1ii | 85.856 (13) |
Cl2—Cr1—Cl3i | 91.906 (16) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
Acknowledgements
The authors thank Utah State University for funding and Hayden Griffiths for experimental assistance.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bellitto, C., Dessy, G., Fares, V., Fiorani, D. & Viticoli, S. (1984). J. Phys. Chem. Solids, 45, 1129–1134. CSD CrossRef CAS Web of Science Google Scholar
Crama, W. J., Bakker, M., Verschoor, G. C. & Maaskant, W. J. A. (1979). Acta Cryst. B35, 1875–1877. CrossRef CAS IUCr Journals Web of Science Google Scholar
Crama, W. J., Maaskant, W. J. A. & Verschoor, G. C. (1978). Acta Cryst. B34, 1973–1974. CrossRef CAS IUCr Journals Web of Science Google Scholar
Crama, W. J. & Zandbergen, H. W. (1981). Acta Cryst. B37, 1027–1031. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891. CrossRef CAS IUCr Journals Web of Science Google Scholar
Hardt, H.-D. & Streit, G. (1970). Z. Anorg. Allg. Chem. 373, 97–120. CrossRef CAS Web of Science Google Scholar
McPherson, G. L., Kistenmacher, T. J., Folkers, J. B. & Stucky, G. D. (1972). J. Chem. Phys. 57, 3771–3780. CrossRef CAS Web of Science Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, H., Holladay, J. E., Brown, H. & Zhang, Z. C. (2007). Science, 316, 1597–1600. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently it was shown that a solution of CrCl2 in the ionic liquid 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at 100°C will catalyze the conversion of glucose to 5-hydroxymethylfurfural (HMF) in 70% yield (Zhao et al., 2007). The proposed active catalyst in this system is a compound formulated as [EMIM]CrCl3. While alkali metal, ammonium, and tetramethyl ammonium chromium(II) trihalides have been previously reported in the literature (Hardt & Streit, 1970), the title compound is the first structurally characterized imidazolium analog.
The structure consists of infinite linear chains of Jahn–Teller-distorted chromium centers (Fig. 1) bridged by a facial array of chloride ligands (Fig. 2). Each CrII has four Cr—Cl bonds of σim 2.39–2.45 Å and two longer Cr—Cl interactions (2.87–2.91 Å). The Cr···Cr distance is 3.33 Å. The Cl—Cr—Cl bond angles are in the range of 87–90°. The shortest Cr···Cr distance between chains is 9.19 Å. A number of differences are evident in the structures of [EMIM]CrCl3 (collected at 150 (1) K) and the previously reported [N(CH3)4]CrCl3 (collected at room temperature; Bellitto et al., 1984). Specifically, the chromium center in [EMIM]CrCl3 has pseudo D4h site symmetry whereas [N(CH3)4]CrCl3 contains trigonally distorted chromium centers (C3v site symmetry) positioned in alternating compressed and elongated face-sharing octahedra. Similar site symmetry to that found in [N(CH3)4]CrCl3 was identified in the room temperature structure of α-CsCrCl3, see: McPherson et al. (1972) and Crama & Zandbergen (1981). This C3v site symmetry is described as resulting from randomly distributed elongation of Cr—Cl bonds along three principal axes of the octahedron.