organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(Hy­droxy­meth­yl)phen­yl]-1-phenyl­ethanol

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 27 December 2008; accepted 24 January 2009; online 28 January 2009)

The title compound, C15H16O2, has a dihedral angle of 19.10 (5)° between the mean planes of the two benzene rings. There is an intra­molecular O—H⋯O hydrogen bond and the C—C—C—C torsion angle across the bridge between the two rings is 173.13 (14)°. The mol­ecules form inter­molecular O—H⋯O hydrogen-bonded chains extending along the a axis. C—H⋯π contacts are also observed between mol­ecules within the chains.

Related literature

For bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Azzena et al. (1996[Azzena, U., Demarlis, S. & Melloni, G. (1996). J. Org. Chem. 61, 4913-4919.]), and references therein; Barluenga et al. (1987[Barluenga, J., Rubiera, C., Fernandez, J. R., Flóres, J. & Yus, M. (1987). Synthesis, pp. 819-821.]); Shing et al. (1994[Shing, T. K. M., Fung, W.-C. & Wong, C.-H. (1994). J. Chem. Soc. Chem. Commun. pp. 449-450.]); Lim & Hudson (2004[Lim, S. H. & Hudson, S. M. (2004). Carbohydr. Polym. 56, 227-234.]); Tirodkar & Usgaonkar (1972[Tirodkar, R. B. & Usgaonkar, R. N. (1972). Indian J. Chem. 10, 1060-1064.]); Odabaşoglu et al. (2007[Odabaşoglu, M., Albayrak, C., Özkanca, R., Zehra Aykan, F. & Lonecke, P. (2007). J. Mol. Struct. 840, 71-89.]). For related crystal structures, see: Gałdecki et al. (1984[Gałdecki, Z., Grochulski, P., Luciak, B., Wawrzak, Z. & Duax, W. L. (1984). Acta Cryst. C40, 1197-1198.]); Hoyos-Guerrero et al. (1983[Hoyos-Guerrero, M. A., Martínez-Carrera, S. & García-Blanco, S. (1983). Acta Cryst. C39, 118-119.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O2

  • Mr = 228.28

  • Orthorhombic, P b c a

  • a = 8.550 (1) Å

  • b = 15.8676 (18) Å

  • c = 18.593 (2) Å

  • V = 2522.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 (2) K

  • 0.33 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.996

  • 17664 measured reflections

  • 2347 independent reflections

  • 1618 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.100

  • S = 1.05

  • 2347 reflections

  • 218 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.86 (2) 1.89 (2) 2.745 (2) 170.5 (24)
O1—H1O⋯O2 0.93 (2) 1.78 (2) 2.706 (2) 173.6 (22)
C15—H15BCg2i 0.95 (2) 2.638 (18) 3.504 (2) 151.7 (14)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

A wide range of diaryl diols have been prepared earlier from phthalane and readily available substituted benzaldehyde (Azzena et al., 1996). The diols in general can act as precursors of corresponding oxygen containing heterocyclic compounds by a dehydration process for e.g. benzodihydropyrans; benzoxepines have been prepared (Barluenga et al., 1987, Shing et al., 1987). The hydroxyl structural moiety was found in numerous pharmaceutically active compounds and therefore represents an interesting template for combinatorial as well as medicinal chemistry (Lim and Hudson, 2004). In particular phenylethanol derivatives have good antifungal properties (Tirodkar and Usgaonkar, 1972, Odabaşoglu et al., 2007, Gałdecki et al., 1984, Hoyos-Guerrero et al., 1983).

All the bond lengths are within normal ranges in the title compound (Fig. 1) (Allen et al., 1987). The tight conformation of the molecule is held by an O—H···O intramolecular hydrogen bond (Fig. 1) with C6—C7—C8—C9 torsional angle of 173.13 (14)°. Further, O—H···O and C—H···π (Fig. 2) intermolecular interactions stabilize the packing of the crystal structure and form chains running along the a axis. Cg2 is the centroid of the hydroxymethylphenyl ring C9 - C14 (Table 1).

Related literature top

For bond lengths in organic compounds, see: Allen et al. (1987). For general background, see: Azzena et al. (1996), and references therein; Barluenga et al. (1987); Shing et al. (1987); Lim & Hudson (2004); Tirodkar & Usgaonkar (1972); Odabaşoglu et al. (2007). For related crystal structures, see: Gałdecki et al. (1984); Hoyos-Guerrero et al. (1983).

Experimental top

3-Phenylisocoumarin (1 eq.) was dissolved in 10 volumes of methanol, sodium borohydride (4 eq.) was added to it and stirred at 50° C under nitrogen atmosphere for 4 hrs. Then two more equivalents of NaBH4 was further added and left overnight at 50° C for completion of the reaction. After TLC analysis, solvent methanol was removed, extracted with ethyl acetate. The ethyl acetate layer was washed with water, dried with anhydrous Na2SO4, evaporated to yield the title compound, which was further purified by washing with petroleum ether. Single-crystals for the structure analysis were obtained by slow evaporation of the ethanol solution.

Refinement top

All H atoms of (I) were located from a difference Fourier map and refined isotropically [C—H = 0.937 (18) - 1.005 (16) Å and O—H = 0.87 (2) - 0.93 (2) Å] and Uiso(H) = 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids. The dotted lines indicates O—H···O intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing diagram of (I).The dotted lines indicate intermolecular hydrogen bonds. All H atoms have been omitted for clarity.
2-[2-(Hydroxymethyl)phenyl]-1-phenylethanol top
Crystal data top
C15H16O2F(000) = 976
Mr = 228.28Dx = 1.202 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2451 reflections
a = 8.550 (1) Åθ = 2.6–19.6°
b = 15.8676 (18) ŵ = 0.08 mm1
c = 18.593 (2) ÅT = 290 K
V = 2522.4 (5) Å3Plate, colorless
Z = 80.33 × 0.30 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2347 independent reflections
Radiation source: fine-focus sealed tube1618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.941, Tmax = 0.996k = 1919
17664 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.042P)2 + 0.2211P]
where P = (Fo2 + 2Fc2)/3
2347 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H16O2V = 2522.4 (5) Å3
Mr = 228.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.550 (1) ŵ = 0.08 mm1
b = 15.8676 (18) ÅT = 290 K
c = 18.593 (2) Å0.33 × 0.30 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2347 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1618 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.996Rint = 0.051
17664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.100All H-atom parameters refined
S = 1.05Δρmax = 0.17 e Å3
2347 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08023 (15)0.19969 (8)0.31581 (6)0.0587 (4)
O20.15538 (17)0.12736 (10)0.24081 (8)0.0790 (5)
C10.0686 (2)0.32636 (11)0.40207 (12)0.0631 (5)
C20.1106 (3)0.39491 (13)0.44389 (16)0.0791 (7)
C30.0712 (3)0.39837 (14)0.51474 (16)0.0791 (7)
C40.0117 (2)0.33381 (15)0.54520 (14)0.0743 (6)
C50.0560 (2)0.26587 (13)0.50386 (11)0.0616 (5)
C60.01577 (17)0.26096 (10)0.43191 (9)0.0461 (4)
C70.05662 (19)0.18243 (10)0.39035 (9)0.0469 (4)
C80.0685 (2)0.11513 (10)0.40226 (10)0.0478 (4)
C90.03113 (17)0.03032 (10)0.37050 (8)0.0445 (4)
C100.0763 (2)0.02101 (11)0.40534 (9)0.0514 (4)
C110.1144 (2)0.09990 (12)0.38015 (11)0.0626 (5)
C120.0437 (3)0.12940 (13)0.31873 (12)0.0692 (6)
C130.0619 (2)0.07976 (13)0.28324 (11)0.0647 (5)
C140.10119 (19)0.00024 (11)0.30772 (8)0.0518 (4)
C150.2216 (2)0.05066 (14)0.26765 (12)0.0692 (6)
H1O0.004 (3)0.1787 (13)0.2901 (11)0.096 (8)*
H2O0.232 (3)0.1551 (14)0.2219 (11)0.105 (8)*
H10.101 (2)0.3201 (12)0.3512 (10)0.079 (6)*
H20.171 (3)0.4390 (14)0.4206 (11)0.104 (7)*
H30.100 (2)0.4462 (13)0.5457 (11)0.093 (7)*
H40.038 (2)0.3338 (12)0.5953 (11)0.087 (7)*
H50.111 (2)0.2208 (11)0.5256 (9)0.065 (5)*
H70.1592 (18)0.1606 (9)0.4084 (7)0.044 (4)*
H8A0.0803 (17)0.1090 (9)0.4542 (9)0.059 (5)*
H8B0.1713 (19)0.1375 (9)0.3842 (8)0.052 (4)*
H100.1226 (17)0.0018 (10)0.4494 (8)0.053 (4)*
H110.187 (2)0.1344 (11)0.4052 (9)0.071 (6)*
H120.067 (2)0.1845 (13)0.3011 (10)0.082 (6)*
H130.111 (2)0.0980 (11)0.2409 (10)0.068 (5)*
H15A0.314 (2)0.0640 (11)0.3010 (9)0.076 (6)*
H15B0.261 (2)0.0187 (12)0.2284 (10)0.080 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0585 (8)0.0659 (8)0.0516 (7)0.0040 (6)0.0152 (6)0.0044 (6)
O20.0660 (9)0.0919 (11)0.0791 (10)0.0021 (8)0.0273 (8)0.0233 (8)
C10.0620 (12)0.0552 (12)0.0722 (14)0.0072 (10)0.0079 (10)0.0099 (10)
C20.0730 (15)0.0498 (13)0.114 (2)0.0109 (11)0.0164 (14)0.0105 (14)
C30.0643 (14)0.0566 (13)0.116 (2)0.0113 (11)0.0255 (14)0.0242 (14)
C40.0616 (13)0.0821 (16)0.0791 (16)0.0104 (12)0.0005 (11)0.0248 (13)
C50.0565 (12)0.0610 (12)0.0672 (13)0.0047 (10)0.0067 (10)0.0056 (10)
C60.0373 (9)0.0451 (9)0.0560 (11)0.0034 (7)0.0046 (7)0.0040 (8)
C70.0417 (9)0.0504 (10)0.0487 (10)0.0038 (8)0.0013 (8)0.0044 (8)
C80.0480 (10)0.0513 (10)0.0443 (10)0.0026 (8)0.0058 (8)0.0012 (8)
C90.0431 (9)0.0486 (9)0.0417 (9)0.0053 (7)0.0065 (7)0.0050 (7)
C100.0589 (11)0.0525 (11)0.0429 (10)0.0048 (9)0.0004 (8)0.0092 (8)
C110.0669 (13)0.0549 (12)0.0661 (13)0.0063 (10)0.0037 (10)0.0141 (10)
C120.0813 (15)0.0502 (12)0.0760 (14)0.0033 (11)0.0132 (12)0.0065 (11)
C130.0686 (13)0.0682 (13)0.0573 (12)0.0092 (11)0.0011 (10)0.0147 (10)
C140.0462 (10)0.0587 (11)0.0505 (10)0.0059 (8)0.0004 (8)0.0019 (9)
C150.0548 (12)0.0803 (15)0.0724 (14)0.0045 (11)0.0189 (11)0.0051 (12)
Geometric parameters (Å, º) top
O1—C71.4270 (19)C7—H71.001 (14)
O1—H1O0.93 (2)C8—C91.504 (2)
O2—C151.432 (2)C8—H8A0.977 (17)
O2—H2O0.87 (2)C8—H8B1.005 (16)
C1—C61.380 (2)C9—C101.388 (2)
C1—C21.384 (3)C9—C141.396 (2)
C1—H10.990 (18)C10—C111.376 (2)
C2—C31.361 (3)C10—H100.979 (15)
C2—H20.97 (2)C11—C121.374 (3)
C3—C41.369 (3)C11—H110.947 (18)
C3—H30.99 (2)C12—C131.368 (3)
C4—C51.377 (3)C12—H120.955 (19)
C4—H40.96 (2)C13—C141.390 (3)
C5—C61.383 (3)C13—H130.937 (18)
C5—H50.948 (17)C14—C151.501 (2)
C6—C71.507 (2)C15—H15A1.024 (19)
C7—C81.528 (2)C15—H15B0.952 (19)
C7—O1—H1O108.8 (13)C7—C8—H8A106.6 (9)
C15—O2—H2O105.9 (15)C9—C8—H8B111.7 (9)
C6—C1—C2120.0 (2)C7—C8—H8B108.5 (9)
C6—C1—H1117.0 (11)H8A—C8—H8B106.0 (12)
C2—C1—H1122.9 (11)C10—C9—C14118.26 (15)
C3—C2—C1120.8 (2)C10—C9—C8118.85 (15)
C3—C2—H2122.2 (13)C14—C9—C8122.88 (15)
C1—C2—H2117.0 (13)C11—C10—C9122.12 (18)
C2—C3—C4119.9 (2)C11—C10—H10121.7 (9)
C2—C3—H3122.3 (12)C9—C10—H10116.2 (9)
C4—C3—H3117.8 (12)C12—C11—C10119.3 (2)
C3—C4—C5119.8 (2)C12—C11—H11119.9 (10)
C3—C4—H4121.5 (12)C10—C11—H11120.8 (10)
C5—C4—H4118.7 (12)C13—C12—C11119.7 (2)
C4—C5—C6121.0 (2)C13—C12—H12120.0 (12)
C4—C5—H5119.3 (11)C11—C12—H12120.3 (12)
C6—C5—H5119.6 (10)C12—C13—C14121.84 (19)
C1—C6—C5118.44 (17)C12—C13—H13121.5 (11)
C1—C6—C7122.45 (16)C14—C13—H13116.7 (11)
C5—C6—C7118.99 (15)C13—C14—C9118.84 (17)
O1—C7—C6111.84 (13)C13—C14—C15119.33 (17)
O1—C7—C8111.96 (14)C9—C14—C15121.79 (17)
C6—C7—C8109.95 (13)O2—C15—C14110.79 (16)
O1—C7—H7105.5 (8)O2—C15—H15A109.8 (11)
C6—C7—H7108.5 (8)C14—C15—H15A109.6 (10)
C8—C7—H7108.8 (8)O2—C15—H15B109.0 (11)
C9—C8—C7114.80 (14)C14—C15—H15B110.0 (12)
C9—C8—H8A108.7 (9)H15A—C15—H15B107.5 (16)
C6—C1—C2—C30.8 (3)C7—C8—C9—C14104.47 (18)
C1—C2—C3—C40.4 (3)C14—C9—C10—C110.4 (2)
C2—C3—C4—C50.5 (3)C8—C9—C10—C11178.90 (15)
C3—C4—C5—C61.1 (3)C9—C10—C11—C120.3 (3)
C2—C1—C6—C50.2 (3)C10—C11—C12—C130.7 (3)
C2—C1—C6—C7176.30 (16)C11—C12—C13—C140.4 (3)
C4—C5—C6—C10.7 (3)C12—C13—C14—C90.3 (3)
C4—C5—C6—C7175.50 (16)C12—C13—C14—C15178.15 (19)
C1—C6—C7—O132.5 (2)C10—C9—C14—C130.7 (2)
C5—C6—C7—O1151.38 (15)C8—C9—C14—C13178.57 (15)
C1—C6—C7—C892.49 (18)C10—C9—C14—C15178.43 (16)
C5—C6—C7—C883.59 (19)C8—C9—C14—C150.8 (2)
O1—C7—C8—C961.90 (19)C13—C14—C15—O2118.82 (19)
C6—C7—C8—C9173.13 (14)C9—C14—C15—O263.4 (2)
C7—C8—C9—C1076.31 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.86 (2)1.89 (2)2.745 (2)171 (2)
O1—H1O···O20.93 (2)1.78 (2)2.706 (2)174 (2)
C15—H15B···Cg(2)i0.95 (2)2.638 (18)3.504 (2)151.7 (14)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16O2
Mr228.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)8.550 (1), 15.8676 (18), 18.593 (2)
V3)2522.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.941, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17664, 2347, 1618
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.05
No. of reflections2347
No. of parameters218
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.86 (2)1.89 (2)2.745 (2)170.5 (24)
O1—H1O···O20.93 (2)1.78 (2)2.706 (2)173.6 (22)
C15—H15B···Cg(2)i0.95 (2)2.638 (18)3.504 (2)151.7 (14)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thank the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAzzena, U., Demarlis, S. & Melloni, G. (1996). J. Org. Chem. 61, 4913–4919.  CrossRef CAS Web of Science Google Scholar
First citationBarluenga, J., Rubiera, C., Fernandez, J. R., Flóres, J. & Yus, M. (1987). Synthesis, pp. 819–821.  CrossRef Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGałdecki, Z., Grochulski, P., Luciak, B., Wawrzak, Z. & Duax, W. L. (1984). Acta Cryst. C40, 1197–1198.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHoyos-Guerrero, M. A., Martínez-Carrera, S. & García-Blanco, S. (1983). Acta Cryst. C39, 118–119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLim, S. H. & Hudson, S. M. (2004). Carbohydr. Polym. 56, 227–234.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoglu, M., Albayrak, C., Özkanca, R., Zehra Aykan, F. & Lonecke, P. (2007). J. Mol. Struct. 840, 71–89.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Fung, W.-C. & Wong, C.-H. (1994). J. Chem. Soc. Chem. Commun. pp. 449–450.  CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTirodkar, R. B. & Usgaonkar, R. N. (1972). Indian J. Chem. 10, 1060–1064.  CAS Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds