organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­­oxy)propanohydrazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: shameed@qau.edu.pk

(Received 15 January 2009; accepted 26 January 2009; online 31 January 2009)

The title compound, C9H11BrN2O2, is an important inter­mediate for the synthesis of heterocyclic compounds such as azoles, 2,5-disubstituted-1,3,4-oxadiazo­les and 5-substituted 2-mercapto-1,3,4-oxadiazo­les. The bromo­phen­oxy group subtends a dihedral angle of 82.81 (7)° with the plane passing through the propanohydrazide moiety. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds that form columns extending along the b axis.

Related literature

For carboxy­hydrazide derivatives with biological activities, see: Belkadi & Othman (2006[Belkadi, M. & Othman, A. A. (2006). ARKIVOC, part xi, pp. 183-195.]); Goswami et al. (1984[Goswami, B. N., Kataky, J. C. S. & Baruah, J. N. (1984). J. Heterocycl. Chem. 21, 1225-1229.]); Akhtar et al. (2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135-149.]); Akhtar, Hameed et al. (2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.]); Ahmad et al. (1996[Ahmad, R., Zia-ul-Haq, M., Jabeen, R. & Duddeck, H. (1996). Turk. J. Chem. 20, 186-193.]); Akhtar et al. (2006[Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. 22, 307-308.]); For related structures, see: Akhtar, Khawar Rauf et al. (2007[Akhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590-o2592.]); Zheng (2008[Zheng, Y.-Y. (2008). Z. Kristallogr. New Cryst. Struct. 223, 295-296.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11BrN2O2

  • Mr = 259.11

  • Monoclinic, P 21 /c

  • a = 10.2598 (14) Å

  • b = 4.8009 (7) Å

  • c = 23.322 (3) Å

  • β = 112.712 (6)°

  • V = 1059.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 113 (2) K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: integration (NUMABS; Higashi, 1999) Tmin = 0.531, Tmax = 0.759

  • 8296 measured reflections

  • 2418 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.076

  • S = 1.20

  • 2418 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (3) 1.97 (3) 2.812 (3) 170 (3)
N2—H2A⋯O1ii 0.83 (3) 2.33 (3) 3.127 (3) 161 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Carboxylic acid hydrazides are important biological agents and intermediates in the synthesis of biologically active heterocycles with two nitrogen atoms at adjacent positions (Belkadi & Othman, 2006). The hydrazides when treated with isocyanates or isothiocyanates afford semicarbazides and thiosemicarbazides, respectively (Goswami et al., 1984). These are important intermediates in the synthesis of azoles under acidic or basic conditions (Akhtar et al., 2007a; Ahmad et al., 1996). In continuation of our previous studies (Akhtar et al., 2006; Akhtar et al., 2007b), the title compound, 2-(4-bromophenoxy)propane hydrazide,was synthesized as an intermediate in the synthesis of certain azole derivatives (Akhtar et al., 2008). The C—N bond length of 1.330 (3)Å is similar to C—N 1.321 (3) Å, indicating the single bond character.The N1—N2 bond length of 1.415 (3) Å in the title compound is longer than the N—N distance [1.366 (3)Å] in the crystal structure of N-propionyl-N'-(3-hydroxy-2-naphthoyl)hydrazide (Zheng, 2008). The Bromo group is coplanar with the phenyl plane C3/C4/C5/C6/C7/C8 with deviation from the plane of 0.030 (4) Å. The molecular packing diagram (Fig. 2) shows the presence of two intermolecular N—H···O hydrogen bonds, (Table 1), one of which is generated via translation along [0 1 0], the other via inversion symmetry.

Related literature top

For carboxyhydrazide derivatives with biological activities, see: Belkadi & Othman (2006); Goswami et al. (1984); Akhtar et al. (2008); Akhtar, Hameed et al. (2007); Ahmad et al. (1996); Akhtar et al. (2006); For related structures, see: Akhtar, Khawar Rauf et al. (2007); Zheng (2008).

Experimental top

Methyl 2-(4-bromophenoxy)propionate (5.0 g, 0.0193 mol) was dissolved in methanol (20 ml) and hydrazine hydrate (80%, 3.50 mL, 0.0679 mol) added slowly with stirring. The reaction mixture was set to reflux. After completion of the reaction (TLC, 6 hrs), the reaction mixture was concentrated and poured to water. The precipitated solid was filtered and recrystallized from ethanol/ water. The spectroscopic and physical characterization data will be reported separately.

Refinement top

The H atoms on the N atoms were refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–1.000 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the N—H···O hydrogen bonded molecules. The unit cell has been omitted for clarity.
2-(4-Bromophenoxy)propanohydrazide top
Crystal data top
C9H11BrN2O2F(000) = 520
Mr = 259.11Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 2804 reflections
a = 10.2598 (14) Åθ = 3.4–27.5°
b = 4.8009 (7) ŵ = 3.86 mm1
c = 23.322 (3) ÅT = 113 K
β = 112.712 (6)°Block, colorless
V = 1059.7 (3) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2201 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.039
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1311
Tmin = 0.531, Tmax = 0.759k = 64
8296 measured reflectionsl = 2630
2418 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0037P)2 + 1.6325P]
where P = (Fo2 + 2Fc2)/3
2418 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C9H11BrN2O2V = 1059.7 (3) Å3
Mr = 259.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2598 (14) ŵ = 3.86 mm1
b = 4.8009 (7) ÅT = 113 K
c = 23.322 (3) Å0.50 × 0.30 × 0.20 mm
β = 112.712 (6)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2418 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
2201 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.759Rint = 0.039
8296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.59 e Å3
2418 reflectionsΔρmin = 0.75 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4780 (3)0.1909 (5)0.40801 (12)0.0143 (5)
O10.4868 (2)0.0616 (4)0.41874 (9)0.0203 (4)
N10.5635 (2)0.3771 (4)0.44658 (11)0.0162 (5)
H10.551 (3)0.551 (6)0.4399 (14)0.019*
N20.6750 (3)0.3047 (5)0.50307 (11)0.0200 (5)
H2A0.643 (3)0.205 (7)0.5240 (15)0.024*
H2B0.740 (3)0.209 (6)0.4928 (14)0.024*
C20.3698 (3)0.3120 (6)0.34780 (13)0.0188 (6)
H20.32600.48390.35680.023*
O20.2635 (2)0.1095 (4)0.31761 (9)0.0199 (4)
C30.1643 (3)0.0534 (5)0.34207 (13)0.0164 (5)
C40.0672 (3)0.1518 (6)0.31070 (12)0.0180 (5)
H40.07610.24600.27660.022*
C50.0425 (3)0.2199 (6)0.32900 (13)0.0205 (6)
H50.10920.35950.30760.025*
C60.0528 (3)0.0808 (6)0.37882 (14)0.0222 (6)
C70.0439 (3)0.1215 (6)0.41093 (14)0.0218 (6)
H70.03530.21400.44530.026*
C80.1534 (3)0.1881 (6)0.39257 (13)0.0190 (6)
H80.22080.32560.41450.023*
Br10.20430 (4)0.16915 (9)0.403569 (18)0.04154 (13)
C90.4395 (4)0.3772 (7)0.30247 (15)0.0332 (8)
H9A0.48270.20760.29430.050*
H9B0.51250.51940.32040.050*
H9C0.36820.44660.26340.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (13)0.0134 (12)0.0163 (13)0.0004 (10)0.0090 (11)0.0010 (10)
O10.0227 (11)0.0116 (9)0.0254 (11)0.0004 (8)0.0079 (9)0.0015 (8)
N10.0194 (12)0.0079 (10)0.0167 (12)0.0010 (9)0.0020 (10)0.0014 (9)
N20.0196 (12)0.0209 (12)0.0168 (12)0.0003 (10)0.0041 (10)0.0026 (10)
C20.0176 (13)0.0184 (13)0.0176 (14)0.0041 (11)0.0035 (11)0.0023 (11)
O20.0209 (10)0.0220 (10)0.0152 (10)0.0090 (8)0.0053 (8)0.0031 (8)
C30.0145 (13)0.0166 (13)0.0146 (13)0.0008 (10)0.0017 (11)0.0041 (10)
C40.0186 (13)0.0177 (13)0.0140 (13)0.0000 (11)0.0023 (11)0.0006 (11)
C50.0178 (14)0.0194 (14)0.0194 (15)0.0039 (11)0.0018 (11)0.0008 (11)
C60.0165 (14)0.0272 (15)0.0218 (15)0.0005 (11)0.0062 (12)0.0047 (12)
C70.0212 (15)0.0216 (15)0.0200 (15)0.0031 (11)0.0049 (12)0.0021 (11)
C80.0159 (13)0.0182 (13)0.0176 (14)0.0010 (11)0.0006 (11)0.0019 (11)
Br10.02723 (18)0.0649 (3)0.0383 (2)0.01613 (17)0.01901 (15)0.01174 (19)
C90.0321 (18)0.043 (2)0.0216 (16)0.0163 (15)0.0075 (14)0.0044 (14)
Geometric parameters (Å, º) top
C1—O11.234 (3)C4—C51.389 (4)
C1—N11.330 (3)C4—H40.9500
C1—C21.529 (4)C5—C61.379 (4)
N1—N21.415 (3)C5—H50.9500
N1—H10.85 (3)C6—C71.384 (4)
N2—H2A0.83 (3)C6—Br11.903 (3)
N2—H2B0.92 (3)C7—C81.385 (4)
C2—O21.427 (3)C7—H70.9500
C2—C91.520 (4)C8—H80.9500
C2—H21.0000C9—H9A0.9800
O2—C31.372 (3)C9—H9B0.9800
C3—C81.385 (4)C9—H9C0.9800
C3—C41.392 (4)
O1—C1—N1123.1 (2)C5—C4—H4119.8
O1—C1—C2122.0 (2)C3—C4—H4119.8
N1—C1—C2114.9 (2)C6—C5—C4118.7 (3)
C1—N1—N2123.4 (2)C6—C5—H5120.7
C1—N1—H1121 (2)C4—C5—H5120.7
N2—N1—H1115 (2)C5—C6—C7121.6 (3)
N1—N2—H2A109 (2)C5—C6—Br1119.0 (2)
N1—N2—H2B107 (2)C7—C6—Br1119.4 (2)
H2A—N2—H2B111 (3)C6—C7—C8119.5 (3)
O2—C2—C9105.8 (2)C6—C7—H7120.3
O2—C2—C1109.9 (2)C8—C7—H7120.3
C9—C2—C1110.3 (2)C3—C8—C7119.8 (3)
O2—C2—H2110.3C3—C8—H8120.1
C9—C2—H2110.3C7—C8—H8120.1
C1—C2—H2110.3C2—C9—H9A109.5
C3—O2—C2118.5 (2)C2—C9—H9B109.5
O2—C3—C8125.4 (2)H9A—C9—H9B109.5
O2—C3—C4114.6 (2)C2—C9—H9C109.5
C8—C3—C4120.1 (3)H9A—C9—H9C109.5
C5—C4—C3120.4 (3)H9B—C9—H9C109.5
O1—C1—N1—N21.5 (4)O2—C3—C4—C5177.1 (2)
C2—C1—N1—N2176.7 (2)C8—C3—C4—C51.1 (4)
O1—C1—C2—O215.9 (4)C3—C4—C5—C60.2 (4)
N1—C1—C2—O2165.9 (2)C4—C5—C6—C70.6 (4)
O1—C1—C2—C9100.3 (3)C4—C5—C6—Br1179.2 (2)
N1—C1—C2—C977.9 (3)C5—C6—C7—C80.4 (4)
C9—C2—O2—C3166.8 (2)Br1—C6—C7—C8179.3 (2)
C1—C2—O2—C374.1 (3)O2—C3—C8—C7176.8 (2)
C2—O2—C3—C83.5 (4)C4—C3—C8—C71.3 (4)
C2—O2—C3—C4178.3 (2)C6—C7—C8—C30.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)1.97 (3)2.812 (3)170 (3)
N2—H2A···O1ii0.83 (3)2.33 (3)3.127 (3)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11BrN2O2
Mr259.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.2598 (14), 4.8009 (7), 23.322 (3)
β (°) 112.712 (6)
V3)1059.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.531, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
8296, 2418, 2201
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.076, 1.20
No. of reflections2418
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.75

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (3)1.97 (3)2.812 (3)170 (3)
N2—H2A···O1ii0.83 (3)2.33 (3)3.127 (3)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

MKR is grateful to the HEC–Pakistan for financial support for a PhD program under scholarship No. ILC-0363104.

References

First citationAhmad, R., Zia-ul-Haq, M., Jabeen, R. & Duddeck, H. (1996). Turk. J. Chem. 20, 186–193.  CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci. 22, 307–308.  Google Scholar
First citationAkhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590–o2592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelkadi, M. & Othman, A. A. (2006). ARKIVOC, part xi, pp. 183–195.  Google Scholar
First citationGoswami, B. N., Kataky, J. C. S. & Baruah, J. N. (1984). J. Heterocycl. Chem. 21, 1225–1229.  CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y.-Y. (2008). Z. Kristallogr. New Cryst. Struct. 223, 295–296.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds