metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis(di­phenyl­phosphino)ethane-κ2P,P′](2-carboxyl­ato­thio­phenolato-κ2O,S)nickel(II) methanol solvate

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: chm_miaojl@ujn.edu.cn

(Received 20 November 2008; accepted 31 December 2008; online 8 January 2009)

In the title complex, [Ni(C7H4O2S)(C26H24P2)]·CH3OH, the nickel(II) centre adopts an approximately square-planar geometry, with the Ni atom coordinating to the S and O atoms of the bidentate thio­salicylate ligand and the two P atoms of the chelating Ph2PCH2CH2PPh2 ligand. There is hydrogen bonding between the methanol solvent mol­ecule and the carbonyl O atom of the thio­salicylate ligand.

Related literature

For previous preparations and structures of the non-solvated complex, see: Kang et al. (1998[Kang, B.-S., Chen, Z.-N., Gao, H.-R., Zhou, Z.-Y., Wu, B.-M., Mak, T. M. C. & Lin, Z. (1998). Acta Chim. Sin. 56, 58-67.]); McCaffrey et al. (1997[McCaffrey, L. J., Henderson, W., Nicholson, B. K., Mackay, J. E. & Dinger, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 2577-2586.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4O2S)(C26H24P2)]·CH4O

  • Mr = 641.31

  • Monoclinic, P 21 /c

  • a = 13.9229 (15) Å

  • b = 11.6244 (10) Å

  • c = 19.553 (2) Å

  • β = 100.085 (2)°

  • V = 3115.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 (2) K

  • 0.48 × 0.37 × 0.32 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.778

  • 14599 measured reflections

  • 5484 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.10

  • 5484 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.905 (3)
Ni1—P1 2.1378 (11)
Ni1—S1 2.1775 (11)
Ni1—P2 2.2114 (10)
O1—Ni1—P1 178.81 (8)
O1—Ni1—S1 93.94 (8)
P1—Ni1—S1 86.56 (4)
O1—Ni1—P2 92.22 (8)
P1—Ni1—P2 87.20 (4)
S1—Ni1—P2 172.70 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.88 2.697 (5) 171
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and crystal structure of [(dppe)Ni(tsal)] (where dppe is Ph2PCH2CH2PPh2 and tsal is thiosalicylato) have been described by McCaffrey et al. (1997) by a reaction of NiCl2(dppe) and tsalH2 in the presence of pyridine, and also by Kang et al. (1998) via a similar reaction of NiCl2, dppe and thiosalicylate. We have recently obtained the same complex as a methanol solvate when NiCl2(dppe) was reacted with thiosalicylic acid in the presence of NaOH as a base.

As shown in Fig. 1, the coordination geometry around the nickel center is approximately square planar. The sum of the bond angles around the Ni atom is 359.92°, with the trans P—Ni—S and P—Ni—O angles being 172.70 and 178.81°, respectively, Table 1, while in related structures the corresponding values were found to be 361.45, 170.99 and 170.73° (McCaffrey et al., 1997), and 358.4, 166.0, 173.0°, (Kang et al., 1998) respectively. These indicate that in the present structure the P2OS unit is slightly more planar. As expected, the Ni1—P2 bond length (opposite to S, 2.2114 (10) Å) is found to be longer than that for Ni1—P1 (opposite to O, 2.1378 (11) Å), due to the different trans influence of the S and O atoms. Strong O3—H3···O2i [i = x, -y + 1/2, z - 1/2] hydrogen bonding (2.697 Å) is observed between the methanol solvate molecule and the carbonyl O atom of the thiosalicylato group, Table 2.

Related literature top

For previous preparations and structures of the non-solvated complex, see: Kang et al. (1998); McCaffrey et al. (1997).

Experimental top

Thiosalicylic acid (32 mg, 0.2 mmol) was added to a solution of NaOH (0.2 mmol) in methanol (2 ml) to give a slightly yellow solution. This was transferred dropwise to a suspension of NiCl2(dppe) (53 mg, 0.1 mmol) in CH3CN (3 ml). After stirring for 10 min, a deep-red solution formed, from which red crystals (55 mg, 85%) were grown on standing at room temperature. IR (KBr): ν = 3399, 3053, 1596, 1435, 1351, 1102, 746, 690, 531 cm -1.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso = 1.2Ueq(C) for CH2, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq(O) for the OH groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms.
[1,2-Bis(diphenylphosphino)ethane-κ2P,P'](2- carboxylatothiophenolato-κ2O,S)nickel(II) methanol solvate top
Crystal data top
[Ni(C7H4O2S)(C26H24P2)]·CH4OF(000) = 1336
Mr = 641.31Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3936 reflections
a = 13.9229 (15) Åθ = 2.3–25.0°
b = 11.6244 (10) ŵ = 0.83 mm1
c = 19.553 (2) ÅT = 293 K
β = 100.085 (2)°Needle, red
V = 3115.6 (6) Å30.48 × 0.37 × 0.32 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5484 independent reflections
Radiation source: fine-focus sealed tube3538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.693, Tmax = 0.778k = 1313
14599 measured reflectionsl = 2313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0402P)2 + 2.3624P]
where P = (Fo2 + 2Fc2)/3
5484 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C7H4O2S)(C26H24P2)]·CH4OV = 3115.6 (6) Å3
Mr = 641.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9229 (15) ŵ = 0.83 mm1
b = 11.6244 (10) ÅT = 293 K
c = 19.553 (2) Å0.48 × 0.37 × 0.32 mm
β = 100.085 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
5484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3538 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.778Rint = 0.032
14599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.10Δρmax = 0.42 e Å3
5484 reflectionsΔρmin = 0.26 e Å3
370 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.77033 (3)0.40652 (4)0.63023 (2)0.04036 (15)
O10.75357 (19)0.2853 (2)0.69264 (13)0.0507 (7)
O20.7291 (2)0.2026 (3)0.78879 (16)0.0759 (9)
O30.8043 (4)0.5076 (4)0.3236 (2)0.1394 (18)
H30.78700.44080.31550.209*
P10.79225 (7)0.54152 (9)0.56033 (5)0.0436 (3)
P20.81015 (7)0.28485 (8)0.55286 (5)0.0411 (2)
S10.74372 (7)0.54170 (9)0.70171 (5)0.0510 (3)
C10.7130 (3)0.2809 (3)0.7457 (2)0.0475 (9)
C20.6393 (3)0.3695 (3)0.75551 (18)0.0438 (9)
C30.6457 (3)0.4843 (3)0.73642 (19)0.0471 (9)
C40.5722 (3)0.5591 (4)0.7480 (2)0.0725 (13)
H40.57630.63660.73690.087*
C50.4931 (4)0.5208 (5)0.7755 (3)0.0915 (17)
H50.44370.57180.78120.110*
C60.4872 (3)0.4087 (5)0.7944 (3)0.0829 (15)
H60.43380.38270.81260.099*
C70.5615 (3)0.3340 (4)0.7861 (2)0.0611 (11)
H70.55930.25840.80140.073*
C80.8596 (3)0.4831 (3)0.4959 (2)0.0527 (10)
H8A0.85360.53410.45610.063*
H8B0.92820.47590.51590.063*
C90.8175 (3)0.3661 (3)0.47359 (19)0.0496 (10)
H9A0.85910.32650.44630.060*
H9B0.75310.37440.44550.060*
C100.6782 (3)0.5982 (3)0.5114 (2)0.0523 (10)
C110.6009 (3)0.6230 (4)0.5438 (3)0.0807 (15)
H110.60770.61270.59160.097*
C120.5135 (3)0.6628 (5)0.5074 (4)0.0972 (19)
H120.46290.68230.53060.117*
C130.5019 (4)0.6734 (5)0.4376 (4)0.096 (2)
H130.44220.69710.41250.116*
C140.5748 (5)0.6504 (5)0.4049 (3)0.109 (2)
H140.56600.65920.35690.130*
C150.6655 (4)0.6127 (5)0.4412 (3)0.0929 (18)
H150.71650.59780.41750.111*
C160.8670 (3)0.6616 (3)0.59772 (19)0.0490 (10)
C170.8367 (3)0.7736 (4)0.5916 (2)0.0642 (12)
H170.77440.79130.56820.077*
C180.8993 (4)0.8608 (4)0.6203 (3)0.0812 (15)
H180.87880.93700.61570.097*
C190.9905 (4)0.8357 (5)0.6552 (3)0.0829 (16)
H191.03170.89460.67450.099*
C201.0213 (3)0.7247 (5)0.6618 (2)0.0753 (14)
H201.08370.70780.68520.090*
C210.9599 (3)0.6372 (4)0.6338 (2)0.0642 (12)
H210.98090.56130.63910.077*
C220.9319 (3)0.2273 (3)0.58174 (18)0.0441 (9)
C230.9691 (3)0.2240 (5)0.6509 (2)0.0847 (17)
H230.93370.25540.68260.102*
C241.0588 (4)0.1746 (5)0.6744 (3)0.100 (2)
H241.08240.17130.72190.119*
C251.1126 (3)0.1313 (4)0.6301 (3)0.0783 (15)
H251.17430.10160.64640.094*
C261.0760 (4)0.1313 (5)0.5615 (3)0.105 (2)
H261.11180.09910.53040.125*
C270.9856 (3)0.1791 (5)0.5375 (2)0.0917 (18)
H270.96100.17820.49010.110*
C280.7366 (3)0.1591 (3)0.52550 (19)0.0438 (9)
C290.6959 (4)0.0986 (4)0.5731 (2)0.0695 (13)
H290.70370.12340.61890.083*
C300.6425 (4)0.0007 (5)0.5523 (3)0.0901 (17)
H300.61440.04160.58460.108*
C310.6312 (3)0.0381 (4)0.4863 (3)0.0742 (14)
H310.59600.10510.47360.089*
C320.6703 (4)0.0206 (4)0.4382 (3)0.0748 (14)
H320.66240.00580.39260.090*
C330.7224 (3)0.1206 (4)0.4574 (2)0.0672 (13)
H330.74800.16230.42420.081*
C340.8066 (7)0.5619 (7)0.2643 (4)0.192 (4)
H34A0.77060.63250.26330.288*
H34B0.77780.51410.22620.288*
H34C0.87300.57840.26060.288*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0375 (3)0.0465 (3)0.0377 (3)0.0053 (2)0.0082 (2)0.0006 (2)
O10.0646 (17)0.0471 (16)0.0446 (15)0.0164 (13)0.0210 (14)0.0023 (12)
O20.087 (2)0.073 (2)0.074 (2)0.0221 (18)0.0314 (18)0.0313 (18)
O30.217 (5)0.109 (3)0.090 (3)0.041 (3)0.021 (3)0.015 (3)
P10.0375 (5)0.0488 (6)0.0436 (6)0.0021 (4)0.0048 (5)0.0033 (5)
P20.0407 (5)0.0480 (6)0.0349 (5)0.0083 (4)0.0079 (4)0.0013 (4)
S10.0550 (6)0.0490 (6)0.0518 (6)0.0048 (5)0.0168 (5)0.0098 (5)
C10.044 (2)0.049 (2)0.048 (2)0.0002 (18)0.0054 (19)0.002 (2)
C20.040 (2)0.057 (3)0.034 (2)0.0029 (18)0.0049 (17)0.0051 (18)
C30.045 (2)0.056 (3)0.041 (2)0.0072 (19)0.0099 (18)0.0073 (19)
C40.076 (3)0.070 (3)0.077 (3)0.026 (3)0.030 (3)0.001 (3)
C50.070 (3)0.108 (5)0.106 (4)0.032 (3)0.042 (3)0.002 (4)
C60.059 (3)0.109 (5)0.089 (4)0.003 (3)0.035 (3)0.007 (3)
C70.058 (3)0.071 (3)0.058 (3)0.006 (2)0.019 (2)0.006 (2)
C80.047 (2)0.064 (3)0.048 (2)0.006 (2)0.0114 (19)0.010 (2)
C90.042 (2)0.068 (3)0.040 (2)0.0117 (19)0.0102 (17)0.0093 (19)
C100.047 (2)0.047 (2)0.058 (3)0.0043 (19)0.005 (2)0.001 (2)
C110.047 (3)0.103 (4)0.091 (4)0.011 (3)0.007 (3)0.029 (3)
C120.043 (3)0.110 (5)0.134 (5)0.009 (3)0.003 (3)0.032 (4)
C130.069 (4)0.080 (4)0.120 (5)0.011 (3)0.037 (4)0.013 (4)
C140.119 (5)0.120 (5)0.070 (4)0.053 (4)0.033 (4)0.012 (3)
C150.096 (4)0.112 (4)0.064 (3)0.045 (3)0.004 (3)0.003 (3)
C160.046 (2)0.056 (3)0.046 (2)0.0077 (19)0.0098 (19)0.001 (2)
C170.073 (3)0.055 (3)0.064 (3)0.005 (2)0.009 (2)0.006 (2)
C180.108 (4)0.054 (3)0.084 (4)0.017 (3)0.026 (3)0.008 (3)
C190.087 (4)0.097 (4)0.068 (3)0.041 (3)0.023 (3)0.014 (3)
C200.058 (3)0.102 (4)0.064 (3)0.021 (3)0.008 (2)0.009 (3)
C210.053 (3)0.075 (3)0.063 (3)0.007 (2)0.006 (2)0.003 (2)
C220.042 (2)0.051 (2)0.040 (2)0.0077 (17)0.0103 (17)0.0026 (18)
C230.062 (3)0.142 (5)0.048 (3)0.045 (3)0.003 (2)0.013 (3)
C240.074 (3)0.162 (6)0.057 (3)0.055 (4)0.004 (3)0.007 (3)
C250.053 (3)0.110 (4)0.070 (3)0.028 (3)0.005 (3)0.014 (3)
C260.087 (4)0.167 (6)0.067 (3)0.073 (4)0.034 (3)0.023 (4)
C270.080 (3)0.151 (5)0.046 (3)0.061 (4)0.014 (2)0.010 (3)
C280.040 (2)0.049 (2)0.042 (2)0.0079 (18)0.0068 (17)0.0008 (19)
C290.096 (4)0.062 (3)0.054 (3)0.010 (3)0.023 (3)0.004 (2)
C300.122 (5)0.077 (4)0.078 (4)0.033 (3)0.038 (3)0.002 (3)
C310.072 (3)0.058 (3)0.088 (4)0.010 (2)0.004 (3)0.003 (3)
C320.082 (3)0.071 (3)0.066 (3)0.011 (3)0.003 (3)0.013 (3)
C330.075 (3)0.074 (3)0.053 (3)0.010 (3)0.011 (2)0.003 (2)
C340.264 (11)0.185 (9)0.123 (6)0.099 (8)0.025 (7)0.050 (6)
Geometric parameters (Å, º) top
Ni1—O11.905 (3)C14—C151.406 (7)
Ni1—P12.1378 (11)C14—H140.9300
Ni1—S12.1775 (11)C15—H150.9300
Ni1—P22.2114 (10)C16—C171.367 (5)
O1—C11.267 (4)C16—C211.390 (5)
O2—C11.234 (4)C17—C181.390 (6)
O3—C341.326 (7)C17—H170.9300
O3—H30.8200C18—C191.363 (7)
P1—C161.817 (4)C18—H180.9300
P1—C101.827 (4)C19—C201.358 (7)
P1—C81.828 (4)C19—H190.9300
P2—C281.811 (4)C20—C211.378 (6)
P2—C221.818 (4)C20—H200.9300
P2—C91.833 (4)C21—H210.9300
S1—C31.759 (4)C22—C271.360 (5)
C1—C21.490 (5)C22—C231.362 (5)
C2—C71.389 (5)C23—C241.378 (6)
C2—C31.393 (5)C23—H230.9300
C3—C41.391 (5)C24—C251.339 (6)
C4—C51.381 (6)C24—H240.9300
C4—H40.9300C25—C261.348 (6)
C5—C61.360 (7)C25—H250.9300
C5—H50.9300C26—C271.381 (6)
C6—C71.381 (6)C26—H260.9300
C6—H60.9300C27—H270.9300
C7—H70.9300C28—C291.366 (5)
C8—C91.514 (5)C28—C331.386 (5)
C8—H8A0.9700C29—C301.394 (6)
C8—H8B0.9700C29—H290.9300
C9—H9A0.9700C30—C311.345 (7)
C9—H9B0.9700C30—H300.9300
C10—C151.363 (6)C31—C321.352 (6)
C10—C111.372 (6)C31—H310.9300
C11—C121.379 (6)C32—C331.387 (6)
C11—H110.9300C32—H320.9300
C12—C131.351 (8)C33—H330.9300
C12—H120.9300C34—H34A0.9600
C13—C141.318 (8)C34—H34B0.9600
C13—H130.9300C34—H34C0.9600
O1—Ni1—P1178.81 (8)C13—C14—C15121.1 (6)
O1—Ni1—S193.94 (8)C13—C14—H14119.4
P1—Ni1—S186.56 (4)C15—C14—H14119.4
O1—Ni1—P292.22 (8)C10—C15—C14119.6 (5)
P1—Ni1—P287.20 (4)C10—C15—H15120.2
S1—Ni1—P2172.70 (4)C14—C15—H15120.2
C1—O1—Ni1132.6 (3)C17—C16—C21119.0 (4)
C34—O3—H3109.5C17—C16—P1123.4 (3)
C16—P1—C10108.55 (18)C21—C16—P1117.7 (3)
C16—P1—C8103.64 (18)C16—C17—C18119.8 (4)
C10—P1—C8106.08 (19)C16—C17—H17120.1
C16—P1—Ni1116.27 (13)C18—C17—H17120.1
C10—P1—Ni1113.02 (14)C19—C18—C17120.6 (5)
C8—P1—Ni1108.39 (13)C19—C18—H18119.7
C28—P2—C22104.04 (17)C17—C18—H18119.7
C28—P2—C9106.18 (18)C20—C19—C18120.1 (5)
C22—P2—C9105.40 (17)C20—C19—H19119.9
C28—P2—Ni1121.47 (12)C18—C19—H19119.9
C22—P2—Ni1110.78 (12)C19—C20—C21120.0 (5)
C9—P2—Ni1107.84 (13)C19—C20—H20120.0
C3—S1—Ni1101.81 (13)C21—C20—H20120.0
O2—C1—O1122.4 (4)C20—C21—C16120.5 (5)
O2—C1—C2118.0 (4)C20—C21—H21119.7
O1—C1—C2119.6 (4)C16—C21—H21119.7
C7—C2—C3119.5 (4)C27—C22—C23117.7 (4)
C7—C2—C1117.2 (4)C27—C22—P2122.7 (3)
C3—C2—C1123.4 (3)C23—C22—P2119.4 (3)
C4—C3—C2118.2 (4)C22—C23—C24120.5 (4)
C4—C3—S1117.9 (3)C22—C23—H23119.8
C2—C3—S1123.9 (3)C24—C23—H23119.8
C5—C4—C3121.3 (5)C25—C24—C23121.2 (5)
C5—C4—H4119.3C25—C24—H24119.4
C3—C4—H4119.3C23—C24—H24119.4
C6—C5—C4120.3 (5)C24—C25—C26119.2 (4)
C6—C5—H5119.8C24—C25—H25120.4
C4—C5—H5119.8C26—C25—H25120.4
C5—C6—C7119.3 (5)C25—C26—C27120.1 (5)
C5—C6—H6120.4C25—C26—H26120.0
C7—C6—H6120.4C27—C26—H26120.0
C6—C7—C2121.3 (4)C22—C27—C26121.3 (4)
C6—C7—H7119.4C22—C27—H27119.4
C2—C7—H7119.4C26—C27—H27119.4
C9—C8—P1108.2 (3)C29—C28—C33118.8 (4)
C9—C8—H8A110.1C29—C28—P2119.7 (3)
P1—C8—H8A110.1C33—C28—P2121.5 (3)
C9—C8—H8B110.1C28—C29—C30119.4 (4)
P1—C8—H8B110.1C28—C29—H29120.3
H8A—C8—H8B108.4C30—C29—H29120.3
C8—C9—P2107.2 (3)C31—C30—C29121.0 (5)
C8—C9—H9A110.3C31—C30—H30119.5
P2—C9—H9A110.3C29—C30—H30119.5
C8—C9—H9B110.3C30—C31—C32120.7 (5)
P2—C9—H9B110.3C30—C31—H31119.7
H9A—C9—H9B108.5C32—C31—H31119.7
C15—C10—C11117.7 (4)C31—C32—C33119.4 (5)
C15—C10—P1121.3 (4)C31—C32—H32120.3
C11—C10—P1120.9 (3)C33—C32—H32120.3
C10—C11—C12121.6 (5)C28—C33—C32120.7 (4)
C10—C11—H11119.2C28—C33—H33119.6
C12—C11—H11119.2C32—C33—H33119.6
C13—C12—C11119.4 (6)O3—C34—H34A109.5
C13—C12—H12120.3O3—C34—H34B109.5
C11—C12—H12120.3H34A—C34—H34B109.5
C14—C13—C12120.4 (5)O3—C34—H34C109.5
C14—C13—H13119.8H34A—C34—H34C109.5
C12—C13—H13119.8H34B—C34—H34C109.5
P1—Ni1—O1—C1134 (4)C16—P1—C10—C1185.0 (4)
S1—Ni1—O1—C119.1 (3)C8—P1—C10—C11164.1 (4)
P2—Ni1—O1—C1164.8 (3)Ni1—P1—C10—C1145.5 (4)
O1—Ni1—P1—C1670 (4)C15—C10—C11—C120.9 (8)
S1—Ni1—P1—C1644.69 (15)P1—C10—C11—C12178.2 (4)
P2—Ni1—P1—C16131.52 (15)C10—C11—C12—C132.7 (9)
O1—Ni1—P1—C10163 (4)C11—C12—C13—C142.8 (9)
S1—Ni1—P1—C1081.83 (15)C12—C13—C14—C151.0 (10)
P2—Ni1—P1—C10101.96 (15)C11—C10—C15—C140.9 (8)
O1—Ni1—P1—C846 (4)P1—C10—C15—C14176.4 (4)
S1—Ni1—P1—C8160.88 (14)C13—C14—C15—C100.9 (9)
P2—Ni1—P1—C815.33 (14)C10—P1—C16—C173.2 (4)
O1—Ni1—P2—C2849.42 (16)C8—P1—C16—C17115.6 (4)
P1—Ni1—P2—C28131.62 (14)Ni1—P1—C16—C17125.5 (3)
S1—Ni1—P2—C28162.9 (3)C10—P1—C16—C21176.3 (3)
O1—Ni1—P2—C2273.03 (15)C8—P1—C16—C2163.8 (3)
P1—Ni1—P2—C22105.93 (13)Ni1—P1—C16—C2155.0 (3)
S1—Ni1—P2—C2274.6 (4)C21—C16—C17—C181.0 (6)
O1—Ni1—P2—C9172.11 (15)P1—C16—C17—C18178.4 (3)
P1—Ni1—P2—C98.93 (13)C16—C17—C18—C190.6 (7)
S1—Ni1—P2—C940.2 (4)C17—C18—C19—C200.4 (8)
O1—Ni1—S1—C341.42 (15)C18—C19—C20—C210.7 (8)
P1—Ni1—S1—C3139.66 (13)C19—C20—C21—C161.1 (7)
P2—Ni1—S1—C3171.0 (3)C17—C16—C21—C201.2 (6)
Ni1—O1—C1—O2162.4 (3)P1—C16—C21—C20178.2 (3)
Ni1—O1—C1—C220.7 (5)C28—P2—C22—C2767.9 (4)
O2—C1—C2—C732.1 (5)C9—P2—C22—C2743.6 (5)
O1—C1—C2—C7144.9 (4)Ni1—P2—C22—C27160.0 (4)
O2—C1—C2—C3147.1 (4)C28—P2—C22—C23107.1 (4)
O1—C1—C2—C335.9 (5)C9—P2—C22—C23141.4 (4)
C7—C2—C3—C41.0 (6)Ni1—P2—C22—C2325.0 (4)
C1—C2—C3—C4179.8 (4)C27—C22—C23—C240.8 (8)
C7—C2—C3—S1176.4 (3)P2—C22—C23—C24176.1 (5)
C1—C2—C3—S12.8 (5)C22—C23—C24—C251.7 (10)
Ni1—S1—C3—C4141.0 (3)C23—C24—C25—C263.2 (10)
Ni1—S1—C3—C241.6 (3)C24—C25—C26—C272.2 (10)
C2—C3—C4—C52.0 (7)C23—C22—C27—C261.8 (8)
S1—C3—C4—C5179.6 (4)P2—C22—C27—C26176.9 (5)
C3—C4—C5—C62.3 (8)C25—C26—C27—C220.3 (10)
C4—C5—C6—C70.5 (8)C22—P2—C28—C2986.9 (4)
C5—C6—C7—C23.6 (7)C9—P2—C28—C29162.1 (3)
C3—C2—C7—C63.8 (6)Ni1—P2—C28—C2938.7 (4)
C1—C2—C7—C6177.0 (4)C22—P2—C28—C3391.5 (4)
C16—P1—C8—C9166.6 (3)C9—P2—C28—C3319.4 (4)
C10—P1—C8—C979.2 (3)Ni1—P2—C28—C33142.9 (3)
Ni1—P1—C8—C942.5 (3)C33—C28—C29—C300.9 (7)
P1—C8—C9—P249.1 (3)P2—C28—C29—C30177.5 (4)
C28—P2—C9—C8168.2 (2)C28—C29—C30—C310.5 (8)
C22—P2—C9—C881.8 (3)C29—C30—C31—C320.8 (9)
Ni1—P2—C9—C836.5 (3)C30—C31—C32—C330.2 (8)
C16—P1—C10—C1597.7 (4)C29—C28—C33—C322.0 (6)
C8—P1—C10—C1513.1 (4)P2—C28—C33—C32176.5 (3)
Ni1—P1—C10—C15131.7 (4)C31—C32—C33—C281.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.882.697 (5)171
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H4O2S)(C26H24P2)]·CH4O
Mr641.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9229 (15), 11.6244 (10), 19.553 (2)
β (°) 100.085 (2)
V3)3115.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.48 × 0.37 × 0.32
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.693, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
14599, 5484, 3538
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.10
No. of reflections5484
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.905 (3)Ni1—P22.2114 (10)
Ni1—P12.1378 (11)O1—C11.267 (4)
Ni1—S12.1775 (11)O2—C11.234 (4)
O1—Ni1—P1178.81 (8)O1—Ni1—P292.22 (8)
O1—Ni1—S193.94 (8)P1—Ni1—P287.20 (4)
P1—Ni1—S186.56 (4)S1—Ni1—P2172.70 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.8842.697 (5)171
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the University of Jinan (B0604) for support of this work.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, B.-S., Chen, Z.-N., Gao, H.-R., Zhou, Z.-Y., Wu, B.-M., Mak, T. M. C. & Lin, Z. (1998). Acta Chim. Sin. 56, 58–67.  CAS Google Scholar
First citationMcCaffrey, L. J., Henderson, W., Nicholson, B. K., Mackay, J. E. & Dinger, M. B. (1997). J. Chem. Soc. Dalton Trans. pp. 2577–2586.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds