organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4,4-di­acetyl­hepta­nedioate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technolgy, Nanjing 210009, People's Republic of China, and bDepartment of Light Chemical Engineering, College of Science, Nanjing University of Technolgy, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 20 December 2008; accepted 23 December 2008; online 8 January 2009)

The mol­ecule of the title dicarbonyl compound, C13H20O6, possesses approximate local twofold symmetry. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, generating a chain structure.

Related literature

For general background, see: Kim et al. (2001[Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299-6301.]); Chetia et al. (2004[Chetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett. 45, 2649-2651.]); Ranu & Banerjee (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]); Wang et al. (2008[Wang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20O6

  • Mr = 272.29

  • Monoclinic, P 21 /c

  • a = 11.402 (2) Å

  • b = 8.6910 (17) Å

  • c = 14.845 (3) Å

  • β = 107.35 (3)°

  • V = 1404.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2531 measured reflections

  • 2531 independent reflections

  • 1783 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.202

  • S = 1.01

  • 2531 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O5i 0.97 2.58 3.418 (4) 145
C3—H3B⋯O2ii 0.97 2.55 3.500 (4) 165
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dicarbonyl compounds represent an important class of starting materials used to increase the carbon number of organic compounds (Kim et al., 2001). Some dicarbonyl compounds are useful for the synthesis of enantiomerically pure alcohols (Chetia et al., 2004). Many dicarbonyl compounds have been synthesized with Michael Addition method using diethyl malonate as the starting mateiral, but only a few Michael Addition diadducts have been synthesized under normal condition (Ranu & Banerjee, 2005; Wang et al., 2008). We are focusing our synthetic and structural studies on new products of Michael Addition diadducts from dicarbonyl compounds. We report here the crystal structure of the title dicarbonyl compound (I), Fig 1.

All bond lengths in the compound are within normal ranges (Allen et al., 1987). The central C13 atom lies on a lies on a non-crystallographic pseudo twofold rotation axis. Intermolecular C—H···O hydrogen bond (Table 1, Fig.2) help to establish the one-dimensional supramolecular structure.

Related literature top

For general background, see: Kim et al. (2001); Chetia et al. (2004); Ranu & Banerjee (2005); Wang et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

Acetylacetone (50 mmol), anhydrous potassium carbonate (100 mmol), tetrabutylammonium bromide (1 g) were dissolved in toluene (20 ml) and methyl acrylate (100 mmol) was slowly dropped to the mixture which was stirred for 24 h at 303–333 K, then 100 ml water was added. The organic layer was dried with magnesium sulfate and the solvent removed under vacuum to obtain the crude product, (I). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. 1H NMR (CDCl3, δ, p.p.m.) 3.62(s, 6H), 2.23(m, 4H), 2.144 (m, 10H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I) Intermolecular hydrogen bonds are shown as dashed lines.
Dimethyl 4,4-diacetylheptanedioate top
Crystal data top
C13H20O6F(000) = 584
Mr = 272.29Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 11.402 (2) Åθ = 8–15°
b = 8.6910 (17) ŵ = 0.10 mm1
c = 14.845 (3) ÅT = 293 K
β = 107.35 (3)°Block, colourless
V = 1404.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.970, Tmax = 0.990l = 017
2531 measured reflections3 standard reflections every 200 reflections
2531 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H20O6V = 1404.1 (5) Å3
Mr = 272.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.402 (2) ŵ = 0.10 mm1
b = 8.6910 (17) ÅT = 293 K
c = 14.845 (3) Å0.30 × 0.20 × 0.10 mm
β = 107.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
2531 measured reflections intensity decay: 9%
2531 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
2531 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1970 (2)0.2798 (3)0.80271 (19)0.0587 (7)
O21.1274 (2)0.0419 (2)0.80976 (18)0.0552 (7)
O30.5191 (2)0.3553 (3)0.66776 (18)0.0646 (7)
O40.5065 (2)0.1212 (3)0.60519 (17)0.0585 (7)
O50.7976 (2)0.0496 (2)0.94983 (17)0.0506 (6)
O60.8453 (2)0.4676 (2)0.96422 (18)0.0567 (7)
C11.2919 (4)0.2184 (5)0.7683 (3)0.0710 (12)
H1A1.34300.30060.75860.106*
H1B1.34070.14720.81360.106*
H1C1.25560.16600.70970.106*
C21.1177 (3)0.1782 (3)0.8194 (2)0.0401 (7)
C31.0191 (3)0.2557 (3)0.8502 (2)0.0408 (7)
H3A1.05640.32250.90330.049*
H3B0.96970.31900.79910.049*
C40.9365 (2)0.1393 (3)0.8785 (2)0.0360 (7)
H4A0.90570.06730.82690.043*
H4B0.98580.08140.93240.043*
C50.4002 (3)0.1660 (5)0.5299 (3)0.0597 (10)
H5A0.37240.08050.48810.089*
H5B0.33610.19740.55570.089*
H5C0.42110.25010.49570.089*
C60.5572 (3)0.2265 (4)0.6703 (2)0.0430 (7)
C70.6632 (3)0.1613 (4)0.7454 (2)0.0513 (8)
H7A0.63400.07850.77690.062*
H7B0.72140.11790.71630.062*
C80.7290 (3)0.2793 (3)0.8186 (2)0.0413 (7)
H8A0.76830.35420.78870.050*
H8B0.66860.33330.84100.050*
C90.6618 (3)0.1291 (4)0.9838 (3)0.0582 (9)
H9A0.63150.04011.00810.087*
H9B0.69070.20331.03340.087*
H9C0.59670.17340.93380.087*
C100.7649 (3)0.0831 (4)0.9467 (2)0.0393 (7)
C110.9581 (3)0.2844 (4)1.0738 (2)0.0539 (9)
H11A0.98080.37201.11460.081*
H11B0.91720.21021.10180.081*
H11C1.03050.23891.06480.081*
C120.8733 (3)0.3344 (3)0.9802 (2)0.0394 (7)
C130.8265 (2)0.2094 (3)0.9038 (2)0.0341 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0587 (14)0.0424 (13)0.0902 (18)0.0057 (11)0.0453 (14)0.0031 (12)
O20.0663 (15)0.0377 (13)0.0743 (16)0.0010 (11)0.0403 (13)0.0039 (11)
O30.0630 (16)0.0488 (15)0.0686 (16)0.0126 (12)0.0008 (13)0.0054 (12)
O40.0587 (15)0.0523 (14)0.0544 (14)0.0080 (11)0.0015 (11)0.0059 (11)
O50.0508 (13)0.0329 (12)0.0712 (16)0.0012 (10)0.0228 (11)0.0047 (10)
O60.0595 (15)0.0344 (13)0.0714 (16)0.0049 (10)0.0123 (12)0.0102 (11)
C10.065 (2)0.063 (2)0.105 (3)0.0007 (19)0.055 (2)0.006 (2)
C20.0444 (17)0.0383 (17)0.0393 (16)0.0001 (13)0.0149 (13)0.0041 (12)
C30.0439 (16)0.0348 (15)0.0472 (17)0.0000 (13)0.0188 (13)0.0000 (12)
C40.0335 (15)0.0300 (14)0.0444 (16)0.0032 (12)0.0114 (12)0.0044 (12)
C50.0441 (19)0.075 (3)0.053 (2)0.0015 (18)0.0036 (16)0.0057 (18)
C60.0394 (16)0.0485 (19)0.0436 (17)0.0009 (14)0.0163 (14)0.0008 (14)
C70.0530 (19)0.0474 (19)0.0449 (17)0.0104 (15)0.0013 (15)0.0036 (15)
C80.0409 (16)0.0355 (16)0.0468 (17)0.0046 (13)0.0122 (14)0.0004 (13)
C90.050 (2)0.060 (2)0.075 (2)0.0021 (17)0.0360 (18)0.0016 (18)
C100.0316 (15)0.0415 (17)0.0423 (16)0.0022 (13)0.0072 (12)0.0005 (13)
C110.065 (2)0.0460 (19)0.0474 (19)0.0052 (16)0.0111 (16)0.0047 (15)
C120.0385 (15)0.0337 (16)0.0499 (17)0.0005 (12)0.0191 (13)0.0033 (13)
C130.0322 (14)0.0293 (14)0.0408 (15)0.0007 (11)0.0108 (12)0.0010 (11)
Geometric parameters (Å, º) top
O1—C21.339 (4)C5—H5B0.9600
O1—C11.430 (4)C5—H5C0.9600
O2—C21.202 (4)C6—C71.491 (4)
O3—C61.197 (4)C7—C81.519 (4)
O4—C61.331 (4)C7—H7A0.9700
O4—C51.436 (4)C7—H7B0.9700
O5—C101.209 (4)C8—C131.538 (4)
O6—C121.206 (4)C8—H8A0.9700
C1—H1A0.9600C8—H8B0.9700
C1—H1B0.9600C9—C101.494 (4)
C1—H1C0.9600C9—H9A0.9600
C2—C31.495 (4)C9—H9B0.9600
C3—C41.524 (4)C9—H9C0.9600
C3—H3A0.9700C10—C131.540 (4)
C3—H3B0.9700C11—C121.501 (5)
C4—C131.539 (4)C11—H11A0.9600
C4—H4A0.9700C11—H11B0.9600
C4—H4B0.9700C11—H11C0.9600
C5—H5A0.9600C12—C131.546 (4)
C2—O1—C1116.4 (3)C8—C7—H7A108.9
C6—O4—C5117.5 (3)C6—C7—H7B108.9
O1—C1—H1A109.5C8—C7—H7B108.9
O1—C1—H1B109.5H7A—C7—H7B107.7
H1A—C1—H1B109.5C7—C8—C13113.8 (2)
O1—C1—H1C109.5C7—C8—H8A108.8
H1A—C1—H1C109.5C13—C8—H8A108.8
H1B—C1—H1C109.5C7—C8—H8B108.8
O2—C2—O1122.5 (3)C13—C8—H8B108.8
O2—C2—C3125.8 (3)H8A—C8—H8B107.7
O1—C2—C3111.8 (3)C10—C9—H9A109.5
C2—C3—C4111.6 (2)C10—C9—H9B109.5
C2—C3—H3A109.3H9A—C9—H9B109.5
C4—C3—H3A109.3C10—C9—H9C109.5
C2—C3—H3B109.3H9A—C9—H9C109.5
C4—C3—H3B109.3H9B—C9—H9C109.5
H3A—C3—H3B108.0O5—C10—C9120.6 (3)
C3—C4—C13114.8 (2)O5—C10—C13121.5 (3)
C3—C4—H4A108.6C9—C10—C13117.9 (3)
C13—C4—H4A108.6C12—C11—H11A109.5
C3—C4—H4B108.6C12—C11—H11B109.5
C13—C4—H4B108.6H11A—C11—H11B109.5
H4A—C4—H4B107.5C12—C11—H11C109.5
O4—C5—H5A109.5H11A—C11—H11C109.5
O4—C5—H5B109.5H11B—C11—H11C109.5
H5A—C5—H5B109.5O6—C12—C11121.3 (3)
O4—C5—H5C109.5O6—C12—C13121.1 (3)
H5A—C5—H5C109.5C11—C12—C13117.5 (3)
H5B—C5—H5C109.5C8—C13—C4113.4 (2)
O3—C6—O4123.0 (3)C8—C13—C10108.4 (2)
O3—C6—C7125.7 (3)C4—C13—C10108.9 (2)
O4—C6—C7111.2 (3)C8—C13—C12109.4 (2)
C6—C7—C8113.3 (3)C4—C13—C12109.2 (2)
C6—C7—H7A108.9C10—C13—C12107.3 (2)
C1—O1—C2—O22.7 (5)C3—C4—C13—C10170.5 (2)
C1—O1—C2—C3177.0 (3)C3—C4—C13—C1253.6 (3)
O2—C2—C3—C45.9 (4)O5—C10—C13—C8118.2 (3)
O1—C2—C3—C4174.3 (3)C9—C10—C13—C861.1 (3)
C2—C3—C4—C13175.5 (2)O5—C10—C13—C45.6 (4)
C5—O4—C6—O30.9 (5)C9—C10—C13—C4175.1 (3)
C5—O4—C6—C7177.8 (3)O5—C10—C13—C12123.7 (3)
O3—C6—C7—C84.6 (5)C9—C10—C13—C1257.0 (3)
O4—C6—C7—C8176.7 (3)O6—C12—C13—C89.0 (4)
C6—C7—C8—C13171.8 (3)C11—C12—C13—C8172.9 (3)
C7—C8—C13—C466.3 (3)O6—C12—C13—C4115.7 (3)
C7—C8—C13—C1054.8 (3)C11—C12—C13—C462.4 (3)
C7—C8—C13—C12171.5 (3)O6—C12—C13—C10126.4 (3)
C3—C4—C13—C868.8 (3)C11—C12—C13—C1055.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.972.583.418 (4)145
C3—H3B···O2ii0.972.553.500 (4)165
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H20O6
Mr272.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.402 (2), 8.6910 (17), 14.845 (3)
β (°) 107.35 (3)
V3)1404.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2531, 2531, 1783
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.202, 1.01
No. of reflections2531
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.972.583.418 (4)144.7
C3—H3B···O2ii0.972.553.500 (4)165.1
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett. 45, 2649–2651.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299–6301.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds