metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(2-Morpholinoeth­yl)(2-pyridylmethyl­ene)amine]di­thio­cyanato­zinc(II)

aDepartment of Chemistry, Jiaying University, Meizhou Guangdong 514015, People's Republic of China
*Correspondence e-mail: banghong_cai@163.com

(Received 13 December 2008; accepted 27 December 2008; online 8 January 2009)

The title compound, [Zn(NCS)2(C12H17N3O)], was prepared by the reaction of zinc acetate with pyridine-2-carbaldehyde, 2-morpholinoethyl­amine and ammonium thio­cyanate in an ethanol solution. The ZnII atom is five coordinate with a distorted trigonal–bipyramidal geometry, coordinating with three N atoms of the Schiff base (2-morpholinoeth­yl)(2-pyridylmethyl­idene)amine and two N atoms from two thio­cyanate ligands. The morpholine ring adopts a chair configuration.

Related literature

For background literature on Schiff base complexes, see: Costes et al. (2002[Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886-2891.]); Erxleben (2001[Erxleben, A. (2001). Inorg. Chem. 40, 208-213.]); Lacroix et al. (1996[Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541-545.]); Odoko et al. (2006[Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710-m711.]); Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737-m2738.]). For literature on related zinc(II) complexes, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495.]); Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024-m2025.]); Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m421.]); Zhang & Wang (2007[Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652-m653.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C12H17N3O)]

  • Mr = 400.82

  • Triclinic, [P \overline 1]

  • a = 8.185 (2) Å

  • b = 8.654 (2) Å

  • c = 13.368 (4) Å

  • α = 98.439 (3)°

  • β = 102.587 (3)°

  • γ = 102.501 (3)°

  • V = 883.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 298 (2) K

  • 0.23 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.705, Tmax = 0.736

  • 7386 measured reflections

  • 3770 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.04

  • 3770 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are extremely interesting ligands and many have been used to form a large number of metal complexes (Costes et al., 2002; Erxleben, 2001; Lacroix et al., 1996; Odoko et al., 2006; Ali et al., 2006). As a continuation of our work in this area, we report herein the crystal structure of a new zinc(II) complex of the Schiff base (2-morpholin-4-ylethyl)-(1-pyridin-2-ylmethylidene)amine and ammonium thiocyanate, (I).

The molecular structure of complex (I) is illustrated in Fig. 1. The ZnII atom is five-coordinate in a trigonal-bipyramidal geometry, coordinating with three N-atoms of the Schiff base ligand and two N-atoms from two thiocyanate ligands. All the coordinate bond lengths are typical and comparable with those in the similar zinc(II) complexes (Li et al., 2008; Eltayeb et al., 2007; Ali et al., 2008; Zhang & Wang, 2007). As expected, the morpholine ring adopts a chair configuration.

Related literature top

For background literature on Schiff base complexes, see: Costes et al. (2002); Erxleben (2001); Lacroix et al. (1996); Odoko et al. (2006); Ali et al. (2006). For literature on related zinc(II) complexes, see: Li et al. (2008); Eltayeb et al. (2007); Ali et al. (2008); Zhang & Wang (2007).

Experimental top

Pyridine-2-carbaldehyde (0.1 mmol, 10.7 mg), 2-morpholin-4-ylethylamine (0.1 mmol, 13.0 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and zinc acetate dihydrate (0.1 mmol, 22.0 mg) were mixed in an ethanol solution (20 ml). The mixture was stirred for 2 h at room temperature, giving a colorless solution. Single-crystals were formed by gradual evaporation of the solution in air after several days.

Refinement top

H atoms were placed in calculated positions and treated as riding atoms: C–H = 0.93 - 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound (I), showing 30% probability displacement ellipsoids.
[(2-Morpholinoethyl)(2-pyridylmethylene)amine]dithiocyanatozinc(II) top
Crystal data top
[Zn(NCS)2(C12H17N3O)]Z = 2
Mr = 400.82F(000) = 412
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.185 (2) ÅCell parameters from 2675 reflections
b = 8.654 (2) Åθ = 2.4–25.0°
c = 13.368 (4) ŵ = 1.64 mm1
α = 98.439 (3)°T = 298 K
β = 102.587 (3)°Block, colorless
γ = 102.501 (3)°0.23 × 0.23 × 0.20 mm
V = 883.3 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3770 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.705, Tmax = 0.736k = 1110
7386 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.064P)2 + 0.1459P]
where P = (Fo2 + 2Fc2)/3
3770 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Zn(NCS)2(C12H17N3O)]γ = 102.501 (3)°
Mr = 400.82V = 883.3 (4) Å3
Triclinic, P1Z = 2
a = 8.185 (2) ÅMo Kα radiation
b = 8.654 (2) ŵ = 1.64 mm1
c = 13.368 (4) ÅT = 298 K
α = 98.439 (3)°0.23 × 0.23 × 0.20 mm
β = 102.587 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2989 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.736Rint = 0.031
7386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
3770 reflectionsΔρmin = 0.47 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.87080 (4)0.35121 (4)0.23426 (3)0.04844 (15)
S10.75132 (16)0.05952 (14)0.10471 (7)0.0759 (3)
S21.40376 (14)0.73452 (15)0.38080 (9)0.0854 (4)
O11.1836 (4)0.1269 (4)0.4455 (2)0.0791 (8)
N10.7747 (4)0.5343 (3)0.1472 (2)0.0551 (7)
N20.6437 (3)0.3649 (3)0.2720 (2)0.0552 (7)
N30.8546 (3)0.1714 (3)0.3427 (2)0.0493 (6)
N40.8437 (4)0.1978 (4)0.1048 (2)0.0662 (8)
N51.0969 (4)0.5041 (4)0.2956 (3)0.0793 (10)
C10.6221 (4)0.5515 (4)0.1613 (3)0.0531 (8)
C20.5377 (5)0.6554 (4)0.1166 (3)0.0622 (9)
H20.43230.66520.12850.075*
C30.6133 (5)0.7444 (4)0.0539 (3)0.0662 (10)
H30.55920.81550.02230.079*
C40.7674 (5)0.7276 (4)0.0385 (3)0.0690 (10)
H40.82040.78670.00380.083*
C50.8445 (5)0.6212 (4)0.0866 (3)0.0648 (9)
H50.95030.61030.07590.078*
C60.5531 (4)0.4478 (4)0.2283 (3)0.0603 (9)
H60.44340.44390.23820.072*
C70.5856 (5)0.2577 (6)0.3393 (3)0.0776 (12)
H7A0.46030.21940.31880.093*
H7B0.62140.31510.41170.093*
C80.6656 (5)0.1177 (5)0.3275 (3)0.0730 (11)
H8A0.64150.05240.37820.088*
H8B0.61340.05060.25810.088*
C90.9411 (5)0.2391 (4)0.4547 (3)0.0612 (9)
H9A0.89780.16470.49620.073*
H9B0.91270.34020.47520.073*
C101.1332 (5)0.2682 (5)0.4768 (3)0.0723 (11)
H10A1.17760.35030.44040.087*
H10B1.18400.30880.55130.087*
C111.1103 (5)0.0677 (5)0.3379 (3)0.0757 (11)
H11A1.14710.02830.31620.091*
H11B1.15220.14840.29980.091*
C120.9161 (5)0.0269 (4)0.3108 (3)0.0639 (9)
H12A0.87040.01340.23600.077*
H12B0.87350.05760.34600.077*
C130.8047 (4)0.1408 (4)0.0181 (3)0.0504 (7)
C141.2216 (5)0.6003 (4)0.3288 (3)0.0560 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0390 (2)0.0533 (2)0.0485 (2)0.00680 (15)0.01199 (15)0.00305 (16)
S10.0891 (7)0.0910 (7)0.0462 (5)0.0300 (6)0.0125 (5)0.0066 (5)
S20.0656 (6)0.0863 (7)0.0827 (7)0.0173 (5)0.0278 (6)0.0084 (6)
O10.0664 (17)0.090 (2)0.0778 (19)0.0235 (15)0.0049 (14)0.0222 (16)
N10.0487 (15)0.0542 (16)0.0604 (17)0.0143 (12)0.0129 (13)0.0061 (13)
N20.0465 (15)0.0640 (16)0.0577 (17)0.0151 (13)0.0190 (13)0.0100 (14)
N30.0469 (14)0.0472 (14)0.0473 (14)0.0036 (11)0.0098 (11)0.0060 (11)
N40.083 (2)0.0677 (19)0.0506 (17)0.0277 (16)0.0191 (15)0.0057 (15)
N50.0497 (17)0.077 (2)0.090 (3)0.0094 (16)0.0065 (17)0.0269 (19)
C10.0496 (18)0.0513 (18)0.0517 (19)0.0153 (14)0.0064 (14)0.0036 (14)
C20.056 (2)0.059 (2)0.067 (2)0.0235 (16)0.0071 (17)0.0023 (17)
C30.072 (2)0.0517 (19)0.068 (2)0.0210 (17)0.0016 (19)0.0079 (17)
C40.070 (2)0.058 (2)0.077 (3)0.0139 (18)0.017 (2)0.0159 (19)
C50.055 (2)0.063 (2)0.080 (3)0.0176 (17)0.0196 (18)0.0153 (19)
C60.0466 (18)0.070 (2)0.063 (2)0.0184 (16)0.0179 (16)0.0011 (18)
C70.053 (2)0.107 (3)0.086 (3)0.018 (2)0.034 (2)0.038 (2)
C80.051 (2)0.078 (3)0.084 (3)0.0047 (18)0.0138 (19)0.031 (2)
C90.074 (2)0.0553 (19)0.0471 (19)0.0103 (17)0.0135 (17)0.0017 (15)
C100.071 (2)0.070 (2)0.057 (2)0.0043 (19)0.0076 (18)0.0106 (18)
C110.075 (3)0.085 (3)0.081 (3)0.035 (2)0.031 (2)0.022 (2)
C120.082 (3)0.0477 (18)0.055 (2)0.0115 (17)0.0100 (18)0.0070 (16)
C130.0516 (18)0.0499 (17)0.057 (2)0.0198 (14)0.0182 (15)0.0183 (16)
C140.061 (2)0.064 (2)0.0527 (19)0.0207 (17)0.0245 (17)0.0200 (16)
Geometric parameters (Å, º) top
Zn1—N51.951 (3)C3—C41.356 (6)
Zn1—N41.959 (3)C3—H30.9300
Zn1—N22.051 (3)C4—C51.381 (5)
Zn1—N12.273 (3)C4—H40.9300
Zn1—N32.279 (3)C5—H50.9300
S1—C131.611 (4)C6—H60.9300
S2—C141.618 (4)C7—C81.501 (6)
O1—C111.401 (5)C7—H7A0.9700
O1—C101.409 (5)C7—H7B0.9700
N1—C51.319 (5)C8—H8A0.9700
N1—C11.339 (4)C8—H8B0.9700
N2—C61.253 (4)C9—C101.492 (5)
N2—C71.462 (5)C9—H9A0.9700
N3—C81.475 (4)C9—H9B0.9700
N3—C91.479 (4)C10—H10A0.9700
N3—C121.486 (4)C10—H10B0.9700
N4—C131.137 (4)C11—C121.500 (6)
N5—C141.122 (4)C11—H11A0.9700
C1—C21.375 (5)C11—H11B0.9700
C1—C61.471 (5)C12—H12A0.9700
C2—C31.374 (6)C12—H12B0.9700
C2—H20.9300
N5—Zn1—N4117.35 (16)N2—C6—H6120.4
N5—Zn1—N2126.27 (15)C1—C6—H6120.4
N4—Zn1—N2114.94 (12)N2—C7—C8107.8 (3)
N5—Zn1—N191.02 (12)N2—C7—H7A110.1
N4—Zn1—N193.10 (12)C8—C7—H7A110.1
N2—Zn1—N174.60 (11)N2—C7—H7B110.1
N5—Zn1—N3104.43 (12)C8—C7—H7B110.1
N4—Zn1—N397.98 (11)H7A—C7—H7B108.5
N2—Zn1—N379.39 (11)N3—C8—C7112.0 (3)
N1—Zn1—N3153.98 (10)N3—C8—H8A109.2
C11—O1—C10109.3 (3)C7—C8—H8A109.2
C5—N1—C1117.5 (3)N3—C8—H8B109.2
C5—N1—Zn1130.3 (2)C7—C8—H8B109.2
C1—N1—Zn1112.2 (2)H8A—C8—H8B107.9
C6—N2—C7123.2 (3)N3—C9—C10112.0 (3)
C6—N2—Zn1119.9 (2)N3—C9—H9A109.2
C7—N2—Zn1116.5 (2)C10—C9—H9A109.2
C8—N3—C9110.1 (3)N3—C9—H9B109.2
C8—N3—C12107.7 (3)C10—C9—H9B109.2
C9—N3—C12107.8 (3)H9A—C9—H9B107.9
C8—N3—Zn1100.9 (2)O1—C10—C9112.2 (3)
C9—N3—Zn1115.6 (2)O1—C10—H10A109.2
C12—N3—Zn1114.3 (2)C9—C10—H10A109.2
C13—N4—Zn1159.8 (3)O1—C10—H10B109.2
C14—N5—Zn1175.1 (3)C9—C10—H10B109.2
N1—C1—C2123.0 (3)H10A—C10—H10B107.9
N1—C1—C6113.7 (3)O1—C11—C12111.9 (3)
C2—C1—C6123.3 (3)O1—C11—H11A109.2
C3—C2—C1118.2 (3)C12—C11—H11A109.2
C3—C2—H2120.9O1—C11—H11B109.2
C1—C2—H2120.9C12—C11—H11B109.2
C4—C3—C2119.4 (3)H11A—C11—H11B107.9
C4—C3—H3120.3N3—C12—C11110.8 (3)
C2—C3—H3120.3N3—C12—H12A109.5
C3—C4—C5118.9 (4)C11—C12—H12A109.5
C3—C4—H4120.6N3—C12—H12B109.5
C5—C4—H4120.6C11—C12—H12B109.5
N1—C5—C4123.0 (4)H12A—C12—H12B108.1
N1—C5—H5118.5N4—C13—S1179.4 (3)
C4—C5—H5118.5N5—C14—S2177.4 (3)
N2—C6—C1119.3 (3)

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C12H17N3O)]
Mr400.82
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.185 (2), 8.654 (2), 13.368 (4)
α, β, γ (°)98.439 (3), 102.587 (3), 102.501 (3)
V3)883.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.23 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.705, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
7386, 3770, 2989
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.04
No. of reflections3770
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.47

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Jiaying University for financial support.

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737–m2738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886–2891.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024–m2025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErxleben, A. (2001). Inorg. Chem. 40, 208–213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater. 8, 541–545.  CrossRef CAS Web of Science Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOdoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710–m711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds