organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,3,4,6-Tetra-O-acetyl-β-D-gluco­pyranos­yl)-3-thio­ureido­thio­urea monohydrate

aDepartment of Chemistry, Chifeng College, Chifeng 024001, People's Republic of China, bCollege of Chemistry, Nanjing University, Hankou Road, Nanjing,210093, People's Republic of China, cJiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China, and dState Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Hankou Road, Nanjing,210093, People's Republic of China
*Correspondence e-mail: wangxm07@nju.edu.cn

(Received 15 December 2008; accepted 24 December 2008; online 8 January 2009)

In the title compound, C16H24N4O9S2·H2O, the hexopyranosyl ring adopts a chair conformation (4C1), and the five substituents are in equatorial positions. In the crystal structure, extensive O—H⋯O, N—H⋯S and N—H⋯O hydrogen bonding leads to the formation of a three-dimensional network.

Related literature

For cyclo­addition and nucleophilic addition, see: Pearson et al. (2003[Pearson, M. S. M., Robin, A., Bourgougnon, N., Meslin, J. C. & Deniaud, D. (2003). J. Org. Chem. 68, 8583-8587.]); Reitz et al. (1989[Reitz, A. B., Tuman, R. W., Marchione, C. S., Jordan, A. D., Bowden, C. R. & Maryanoff, B. E. (1989). J. Med. Chem. 32, 2110-2116.]). For the crystal structure of glycosyl isothio­syanate, see: Jiang et al. (2003[Jiang, F. F., Wen, L. R., Li, X. M., Zhang, S. S. & Jiao, K. (2003). Chem. J. Chin. Univ. 24, 58-60.]). For the crystal structures of glycosyl isothio­syanate methanol and ethanol derivatives, see: Zhang et al. (2001[Zhang, S.-S., Wang, Z.-W., Li, M., Jiao, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2001). Acta Cryst. C57, 566-568.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N4O9S2·H2O

  • Mr = 498.53

  • Monoclinic, C 2

  • a = 22.286 (2) Å

  • b = 7.2005 (7) Å

  • c = 15.8772 (17) Å

  • β = 110.119 (2)°

  • V = 2392.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 (2) K

  • 0.45 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6322 measured reflections

  • 3525 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 1.07

  • 3525 reflections

  • 289 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1229 Friedel pairs

  • Flack parameter: −0.16 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H10⋯O5i 0.87 2.64 3.382 (11) 146
O1W—H20⋯O9ii 0.87 2.56 3.181 (9) 129
N1—H1A⋯S2iii 0.86 2.62 3.400 (4) 151
N2—H2A⋯O3iv 0.86 2.09 2.856 (5) 147
N3—H3A⋯O1Wv 0.86 2.13 2.973 (9) 167
N4—H4B⋯O1Wvi 0.86 2.43 3.244 (9) 159
N4—H4C⋯O1iii 0.86 2.49 3.323 (5) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x-1, y, z; (iii) -x+2, y, -z+1; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) x+1, y, z; (vi) x+1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decade, many organic chemists have been engaged in the synthesis of glycosyl isothiosyanates and its derivatives. These compound are versatile reagents in organic synthesis and easily undergo many important reactions, such as cycloaddition (Pearson et al., 2003) and nucleophilic addition (Reitz et al., 1989). Recently, the crystal structures of glycosyl isothiosyanate (Jiang et al., 2003) and the methanol and ethanol derivatives (Zhang et al., 2001) have been reported. However, other derivatives of glycosyl isothiosyanate are still rare. Here we report on the synthesis of a new thiosemicarbazide derivative of glycosyl isothiosyanate, 2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl dithiourea, (I).

The molecular structure of compound (I) is illustrated in Fig. 1. The hexopyranosyl ring adopts a chair conformation (4C1), and the four substituents are in equatorial positions.

In the crystal extensive O—H···O, N—H···S and N—H···O hydrogen bonding (Table 1) leads to the formation of a three-dimensional network.

Related literature top

For cycloaddition and nucleophilic addition, see: Pearson et al. (2003); Reitz et al. (1989). For the crystal structure of glycosyl isothiosyanate, see: Jiang et al. (2003). For the crystal structures of glycosyl isothiosyanate methanol and ethanol derivatives, see: Zhang et al. (2001).

Experimental top

Compound (I) was prepared by refluxing together equimolar amounts of β-D-2,3,4,6-tetra-O- acetyl-glucopyranosyl isothiocyanate and thiosemicarbazide. After cooling to room temperature, water was added to the mixture and compound (I) was isolated as a white solid. Crystals, suitable for X-ray analysis, were grown from an ethyl acetate and acetonitrile (1:1 / v:v) solution by slow evaporation at room temperature.

Refinement top

The compound has a known chiral center [the Flack parameter is -0.16 (12) (Flack, 1983)], and for this reason the Friedel pairs were not merged. The water H-atoms were located in the difference Fourier maps and refined with distance restraintes, O-H = 0.87 (2) Å. The N- and C-bound H-atoms were placed in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.96 - 0.98 Å, with Uiso(H) = 1.2 or 1.5Ueq(parent N- or C-atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-3-thioureidothiourea monohydrate top
Crystal data top
C16H24N4O9S2·H2OF(000) = 1048
Mr = 498.53Dx = 1.384 Mg m3
Monoclinic, C2Melting point: not measured K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 22.286 (2) ÅCell parameters from 7141 reflections
b = 7.2005 (7) Åθ = 1.4–27.7°
c = 15.8772 (17) ŵ = 0.28 mm1
β = 110.119 (2)°T = 293 K
V = 2392.3 (4) Å3Block, colorless
Z = 40.45 × 0.22 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3021 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
ϕ scans, and ω scansh = 2526
6322 measured reflectionsk = 88
3525 independent reflectionsl = 1811
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0808P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3525 reflectionsΔρmax = 0.42 e Å3
289 parametersΔρmin = 0.27 e Å3
7 restraintsAbsolute structure: Flack (1983), 1229 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (12)
Crystal data top
C16H24N4O9S2·H2OV = 2392.3 (4) Å3
Mr = 498.53Z = 4
Monoclinic, C2Mo Kα radiation
a = 22.286 (2) ŵ = 0.28 mm1
b = 7.2005 (7) ÅT = 293 K
c = 15.8772 (17) Å0.45 × 0.22 × 0.22 mm
β = 110.119 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3021 reflections with I > 2σ(I)
6322 measured reflectionsRint = 0.036
3525 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.27 e Å3
3525 reflectionsAbsolute structure: Flack (1983), 1229 Friedel pairs
289 parametersAbsolute structure parameter: 0.16 (12)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.0457 (4)0.2431 (10)0.3624 (6)0.193 (3)
H100.06960.20680.33240.232*
H200.00810.19890.33260.232*
S11.01347 (6)0.9344 (2)0.17559 (9)0.0605 (4)
S21.09337 (7)0.5527 (2)0.56716 (9)0.0720 (5)
O10.87014 (12)0.9697 (4)0.28332 (19)0.0433 (7)
O20.79211 (13)1.1140 (5)0.37749 (19)0.0493 (8)
O30.69458 (16)1.2284 (7)0.3502 (3)0.0796 (12)
O40.69663 (12)0.9277 (5)0.18084 (19)0.0467 (7)
O50.67103 (18)0.7887 (8)0.2901 (3)0.0880 (14)
O60.73828 (13)0.5785 (4)0.14481 (18)0.0455 (7)
O70.71021 (18)0.5906 (6)0.0050 (2)0.0732 (11)
O80.86480 (13)0.5944 (4)0.12682 (18)0.0464 (7)
O90.9131 (2)0.3601 (6)0.2159 (3)0.0902 (14)
N10.95480 (15)0.7892 (5)0.2819 (2)0.0427 (9)
H1A0.95810.72390.32870.051*
N21.06247 (16)0.7629 (6)0.3289 (2)0.0490 (10)
H2A1.09870.79610.32560.059*
N31.06233 (17)0.6483 (6)0.3986 (2)0.0496 (10)
H3A1.05100.53420.38740.060*
N41.0852 (2)0.8905 (7)0.4975 (3)0.0695 (13)
H4B1.07790.96450.45260.083*
H4C1.09600.93450.55100.083*
C10.89174 (18)0.8500 (6)0.2278 (3)0.0396 (10)
H1B0.89400.91950.17590.047*
C20.84790 (19)0.6840 (6)0.1959 (3)0.0387 (10)
H2B0.85380.59770.24590.046*
C30.77758 (18)0.7409 (6)0.1562 (3)0.0387 (10)
H3B0.76930.80280.09830.046*
C40.76213 (18)0.8694 (6)0.2203 (3)0.0396 (10)
H4A0.76810.80440.27680.047*
C50.8067 (2)1.0374 (6)0.2378 (3)0.0423 (10)
H5A0.80481.09020.18000.051*
C60.7926 (2)1.1884 (7)0.2936 (3)0.0487 (11)
H6A0.82491.28480.30500.058*
H6B0.75141.24360.26120.058*
C70.7401 (3)1.1452 (8)0.3977 (4)0.0586 (13)
C80.7464 (4)1.0653 (12)0.4877 (5)0.102 (2)
H8A0.70801.08910.50040.153*
H8B0.78201.12200.53310.153*
H8C0.75320.93370.48720.153*
C90.6553 (2)0.8752 (8)0.2213 (4)0.0534 (12)
C100.5887 (2)0.9374 (11)0.1689 (4)0.0745 (16)
H10A0.56010.89550.19840.112*
H10B0.57580.88590.10960.112*
H10C0.58741.07050.16530.112*
C110.7051 (2)0.5239 (7)0.0609 (3)0.0499 (12)
C120.6616 (3)0.3661 (9)0.0615 (4)0.0735 (17)
H12A0.63890.32730.00110.110*
H12B0.63160.40540.08920.110*
H12C0.68640.26420.09480.110*
C130.8985 (2)0.4365 (7)0.1448 (3)0.0495 (11)
C140.9150 (2)0.3741 (8)0.0673 (4)0.0643 (14)
H14A0.93870.26020.08190.096*
H14B0.94050.46720.05230.096*
H14C0.87650.35430.01700.096*
C151.00857 (19)0.8254 (6)0.2658 (3)0.0418 (10)
C161.0796 (2)0.7105 (7)0.4844 (3)0.0495 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.265 (7)0.099 (4)0.166 (5)0.007 (5)0.012 (5)0.014 (4)
S10.0520 (7)0.0731 (9)0.0629 (8)0.0127 (7)0.0280 (6)0.0215 (7)
S20.0840 (10)0.0872 (11)0.0403 (7)0.0242 (8)0.0154 (6)0.0036 (7)
O10.0333 (14)0.0484 (18)0.0460 (17)0.0008 (13)0.0109 (13)0.0055 (14)
O20.0468 (17)0.053 (2)0.0451 (18)0.0115 (15)0.0115 (14)0.0022 (15)
O30.050 (2)0.104 (3)0.088 (3)0.024 (2)0.029 (2)0.003 (3)
O40.0344 (14)0.0564 (19)0.0471 (17)0.0005 (15)0.0112 (13)0.0011 (16)
O50.062 (2)0.121 (4)0.089 (3)0.011 (2)0.036 (2)0.022 (3)
O60.0445 (16)0.0522 (19)0.0344 (15)0.0082 (15)0.0066 (13)0.0036 (14)
O70.092 (3)0.079 (3)0.0369 (19)0.017 (2)0.0069 (18)0.0039 (19)
O80.0526 (17)0.0488 (18)0.0352 (15)0.0105 (16)0.0118 (13)0.0008 (14)
O90.132 (4)0.073 (3)0.081 (3)0.047 (3)0.056 (3)0.023 (2)
N10.0352 (18)0.051 (2)0.041 (2)0.0027 (17)0.0117 (15)0.0089 (17)
N20.0342 (19)0.069 (3)0.044 (2)0.0034 (18)0.0148 (17)0.008 (2)
N30.046 (2)0.052 (2)0.040 (2)0.0041 (18)0.0019 (17)0.0040 (18)
N40.079 (3)0.073 (3)0.051 (3)0.007 (2)0.016 (2)0.015 (2)
C10.038 (2)0.042 (2)0.039 (2)0.0045 (19)0.0128 (18)0.0030 (19)
C20.041 (2)0.047 (2)0.028 (2)0.0074 (19)0.0111 (18)0.0022 (18)
C30.036 (2)0.044 (2)0.033 (2)0.001 (2)0.0078 (17)0.0021 (19)
C40.031 (2)0.051 (3)0.035 (2)0.0046 (19)0.0101 (17)0.0036 (19)
C50.042 (2)0.042 (2)0.041 (2)0.001 (2)0.0108 (19)0.000 (2)
C60.049 (3)0.041 (3)0.056 (3)0.004 (2)0.017 (2)0.002 (2)
C70.059 (3)0.057 (3)0.065 (3)0.003 (3)0.028 (3)0.008 (3)
C80.145 (6)0.096 (5)0.087 (5)0.033 (5)0.068 (4)0.017 (4)
C90.044 (3)0.060 (3)0.059 (3)0.012 (2)0.021 (2)0.012 (3)
C100.041 (3)0.103 (5)0.080 (4)0.006 (3)0.022 (3)0.016 (4)
C110.046 (3)0.052 (3)0.045 (3)0.003 (2)0.007 (2)0.009 (2)
C120.068 (3)0.075 (4)0.062 (3)0.022 (3)0.003 (3)0.018 (3)
C130.054 (3)0.046 (3)0.047 (3)0.006 (2)0.016 (2)0.006 (3)
C140.062 (3)0.067 (4)0.070 (3)0.014 (3)0.031 (3)0.008 (3)
C150.037 (2)0.045 (3)0.043 (2)0.007 (2)0.0136 (19)0.005 (2)
C160.034 (2)0.066 (3)0.045 (3)0.009 (2)0.010 (2)0.011 (2)
Geometric parameters (Å, º) top
O1W—H100.868 (10)C1—C21.516 (6)
O1W—H200.867 (8)C1—H1B0.9800
S1—C151.669 (5)C2—C31.530 (5)
S2—C161.684 (5)C2—H2B0.9800
O1—C11.430 (5)C3—C41.501 (6)
O1—C51.434 (5)C3—H3B0.9800
O2—C71.324 (6)C4—C51.528 (6)
O2—C61.439 (6)C4—H4A0.9800
O3—C71.196 (6)C5—C61.503 (6)
O4—C91.345 (6)C5—H5A0.9800
O4—C41.439 (5)C6—H6A0.9700
O5—C91.200 (6)C6—H6B0.9700
O6—C111.342 (5)C7—C81.501 (9)
O6—C31.435 (5)C8—H8A0.9600
O7—C111.192 (6)C8—H8B0.9600
O8—C131.338 (6)C8—H8C0.9600
O8—C21.430 (5)C9—C101.500 (7)
O9—C131.195 (6)C10—H10A0.9600
N1—C151.335 (5)C10—H10B0.9600
N1—C11.440 (5)C10—H10C0.9600
N1—H1A0.8600C11—C121.496 (8)
N2—C151.349 (5)C12—H12A0.9600
N2—N31.382 (5)C12—H12B0.9600
N2—H2A0.8600C12—H12C0.9600
N3—C161.358 (6)C13—C141.471 (7)
N3—H3A0.8600C14—H14A0.9600
N4—C161.312 (7)C14—H14B0.9600
N4—H4B0.8600C14—H14C0.9600
N4—H4C0.8600
H10—O1W—H20104.6 (8)O2—C6—C5110.3 (4)
C1—O1—C5112.1 (3)O2—C6—H6A109.6
C7—O2—C6116.6 (4)C5—C6—H6A109.6
C9—O4—C4117.9 (4)O2—C6—H6B109.6
C11—O6—C3117.9 (3)C5—C6—H6B109.6
C13—O8—C2119.8 (3)H6A—C6—H6B108.1
C15—N1—C1125.6 (4)O3—C7—O2123.8 (5)
C15—N1—H1A117.2O3—C7—C8124.9 (5)
C1—N1—H1A117.2O2—C7—C8111.3 (5)
C15—N2—N3123.2 (4)C7—C8—H8A109.5
C15—N2—H2A118.4C7—C8—H8B109.5
N3—N2—H2A118.4H8A—C8—H8B109.5
C16—N3—N2121.9 (4)C7—C8—H8C109.5
C16—N3—H3A119.0H8A—C8—H8C109.5
N2—N3—H3A119.0H8B—C8—H8C109.5
C16—N4—H4B120.0O5—C9—O4123.2 (5)
C16—N4—H4C120.0O5—C9—C10125.6 (5)
H4B—N4—H4C120.0O4—C9—C10111.2 (5)
O1—C1—N1106.4 (3)C9—C10—H10A109.5
O1—C1—C2111.5 (3)C9—C10—H10B109.5
N1—C1—C2110.1 (4)H10A—C10—H10B109.5
O1—C1—H1B109.6C9—C10—H10C109.5
N1—C1—H1B109.6H10A—C10—H10C109.5
C2—C1—H1B109.6H10B—C10—H10C109.5
O8—C2—C1107.6 (3)O7—C11—O6124.5 (4)
O8—C2—C3107.9 (3)O7—C11—C12124.8 (5)
C1—C2—C3112.2 (3)O6—C11—C12110.7 (4)
O8—C2—H2B109.7C11—C12—H12A109.5
C1—C2—H2B109.7C11—C12—H12B109.5
C3—C2—H2B109.7H12A—C12—H12B109.5
O6—C3—C4108.4 (3)C11—C12—H12C109.5
O6—C3—C2109.1 (3)H12A—C12—H12C109.5
C4—C3—C2109.1 (3)H12B—C12—H12C109.5
O6—C3—H3B110.1O9—C13—O8122.9 (4)
C4—C3—H3B110.1O9—C13—C14125.8 (5)
C2—C3—H3B110.1O8—C13—C14111.4 (4)
O4—C4—C3108.7 (3)C13—C14—H14A109.5
O4—C4—C5110.3 (3)C13—C14—H14B109.5
C3—C4—C5109.0 (3)H14A—C14—H14B109.5
O4—C4—H4A109.7C13—C14—H14C109.5
C3—C4—H4A109.7H14A—C14—H14C109.5
C5—C4—H4A109.7H14B—C14—H14C109.5
O1—C5—C6108.5 (3)N1—C15—N2114.9 (4)
O1—C5—C4106.8 (3)N1—C15—S1125.8 (3)
C6—C5—C4115.2 (4)N2—C15—S1119.3 (3)
O1—C5—H5A108.7N4—C16—N3117.6 (5)
C6—C5—H5A108.7N4—C16—S2124.1 (4)
C4—C5—H5A108.7N3—C16—S2118.2 (4)
C15—N2—N3—C16107.9 (5)C1—O1—C5—C6169.4 (3)
C5—O1—C1—N1178.7 (3)C1—O1—C5—C465.9 (4)
C5—O1—C1—C258.6 (4)O4—C4—C5—O1175.5 (3)
C15—N1—C1—O1116.8 (4)C3—C4—C5—O165.3 (4)
C15—N1—C1—C2122.3 (5)O4—C4—C5—C654.9 (5)
C13—O8—C2—C1103.9 (4)C3—C4—C5—C6174.1 (4)
C13—O8—C2—C3134.9 (4)C7—O2—C6—C5125.6 (4)
O1—C1—C2—O8168.0 (3)O1—C5—C6—O264.5 (4)
N1—C1—C2—O874.2 (4)C4—C5—C6—O255.1 (5)
O1—C1—C2—C349.5 (4)C6—O2—C7—O30.8 (7)
N1—C1—C2—C3167.3 (3)C6—O2—C7—C8178.4 (5)
C11—O6—C3—C4129.2 (4)C4—O4—C9—O52.9 (7)
C11—O6—C3—C2112.1 (4)C4—O4—C9—C10176.6 (4)
O8—C2—C3—O673.5 (4)C3—O6—C11—O77.1 (7)
C1—C2—C3—O6168.1 (3)C3—O6—C11—C12173.9 (4)
O8—C2—C3—C4168.2 (3)C2—O8—C13—O93.6 (7)
C1—C2—C3—C449.9 (4)C2—O8—C13—C14175.8 (4)
C9—O4—C4—C3115.1 (4)C1—N1—C15—N2176.3 (4)
C9—O4—C4—C5125.6 (4)C1—N1—C15—S15.0 (7)
O6—C3—C4—O463.5 (4)N3—N2—C15—N18.6 (6)
C2—C3—C4—O4177.8 (3)N3—N2—C15—S1170.2 (3)
O6—C3—C4—C5176.4 (3)N2—N3—C16—N412.4 (7)
C2—C3—C4—C557.7 (4)N2—N3—C16—S2166.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H10···O5i0.868 (10)2.637 (4)3.382 (11)144.5 (5)
O1W—H20···O9ii0.867 (8)2.563 (4)3.181 (9)129.1 (5)
N1—H1A···S2iii0.862.623.400 (4)151
N2—H2A···O3iv0.862.092.856 (5)147
N3—H3A···O1Wv0.862.132.973 (9)167
N4—H4B···O1Wvi0.862.433.244 (9)159
N4—H4C···O1iii0.862.493.323 (5)164
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1/2, y1/2, z; (v) x+1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H24N4O9S2·H2O
Mr498.53
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)22.286 (2), 7.2005 (7), 15.8772 (17)
β (°) 110.119 (2)
V3)2392.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.45 × 0.22 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6322, 3525, 3021
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.07
No. of reflections3525
No. of parameters289
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27
Absolute structureFlack (1983), 1229 Friedel pairs
Absolute structure parameter0.16 (12)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H10···O5i0.868 (10)2.637 (4)3.382 (11)144.5 (5)
O1W—H20···O9ii0.867 (8)2.563 (4)3.181 (9)129.1 (5)
N1—H1A···S2iii0.862.623.400 (4)151
N2—H2A···O3iv0.862.092.856 (5)147
N3—H3A···O1Wv0.862.132.973 (9)167
N4—H4B···O1Wvi0.862.433.244 (9)159
N4—H4C···O1iii0.862.493.323 (5)164
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1/2, y1/2, z; (v) x+1, y, z; (vi) x+1, y+1, z.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 30701041) and the Scientific Research Project of Inner Mongolia Autonomous Region Colleges and Universities (No. NJZY08149).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, F. F., Wen, L. R., Li, X. M., Zhang, S. S. & Jiao, K. (2003). Chem. J. Chin. Univ. 24, 58–60.  Google Scholar
First citationPearson, M. S. M., Robin, A., Bourgougnon, N., Meslin, J. C. & Deniaud, D. (2003). J. Org. Chem. 68, 8583–8587.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReitz, A. B., Tuman, R. W., Marchione, C. S., Jordan, A. D., Bowden, C. R. & Maryanoff, B. E. (1989). J. Med. Chem. 32, 2110–2116.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-S., Wang, Z.-W., Li, M., Jiao, K., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2001). Acta Cryst. C57, 566–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds