metal-organic compounds
Chlorido[N′-(2-oxidobenzilidene)acetohydrazide-κ2O,N′,O′]copper(II) dihydrate
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences, Université de Conakry, Conakry, Guinea
*Correspondence e-mail: mlgayeastou@yahoo.fr
In the title complex, [Cu(C9H9N2O2)Cl]·2H2O, prepared from the Schiff base ligand N′-(2-hydroxybenzilidene)acetohydrazide and copper(II) chloride, the CuII atom is coordinated by two O atoms and one N atom from the ligand and by a Cl atom in a distorted square-planar geometry. The two donor O atoms of the tridentate Schiff base ligand are in a trans arrangement. In the there is an extensive intermolecular hydrogen-bonding network; N—H⋯O, O—H⋯O and O—H⋯Cl interactions, involving the uncoordinated water molecules, lead to the formation of a two-dimensional network parallel to the ab plane.
Related literature
For related structures, see: Ainscough et al. (1998); Chan et al. (1995); Koh et al. (1998). For similar square-planar copper(II) complexes, see: Li et al. (2008); Qiu & Wu (2004).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809000105/su2089sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000105/su2089Isup2.hkl
To 0.356 g (2.0 mmol) of N'-(2-hydroxybenzilidene)acetohydrazide in 20 ml of ethanol was added a solution of copper chloride dihydrate (0.341 g, 2 mmol) in 10 ml of ethanol. The resulting mixture was refluxed for 1 h. After cooling the resulting solution was filtered, and the filtrate left for slow evaporation. Small green crystals of compound (I), suitable for X-ray analysis, was obtained in good yield (0.600 g; 96.0 %). IR (cm-1,KBr): 3490, 1675, 1640, 1620, 1580, 11570, 1465. UV (nm): 720, 600, 400. µeff = 1.80 µB. Conductance: Λ=13 S cm2 mol-1. Analysis calculated for C9H13ClCuN2O4: C 34.62, H 4.20, N 8.97 %; found: C 34.60, H 4.18, N 8.65 %.
The NH hydrogen atom was located in a difference Fourier map and freely refined: 0.81 (3) Å. The water H-atoms were located in difference Fourier maps and refined isotropically with the O-H distances retrainted to 0.88 (2) Å. The remainder of the H-atoms were placed in calculated positions and treated as riding atoms: C-H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the a axis of the crystal packing of compound (I), showing the N—H···O, O—H···O and O—H···Cl hydrogen bonds as dashed lines (see Table 2 for details). |
[Cu(C9H9N2O2)Cl]·2H2O | Z = 2 |
Mr = 312.20 | F(000) = 318 |
Triclinic, P1 | Dx = 1.719 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.762 (2) Å | Cell parameters from 2138 reflections |
b = 8.987 (2) Å | θ = 1.0–30.0° |
c = 10.312 (3) Å | µ = 2.04 mm−1 |
α = 76.940 (11)° | T = 173 K |
β = 84.645 (12)° | Prism, green |
γ = 81.903 (13)° | 0.16 × 0.12 × 0.10 mm |
V = 603.1 (3) Å3 |
Nonius KappaCCD diffractometer | 3036 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 30.0°, θmin = 2.8° |
π [Please check] scans | h = −9→8 |
5193 measured reflections | k = −12→12 |
3520 independent reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[s2(Fo2) + (0.0139P)2 + 0.4006P] where P = (Fo2 + 2Fc2)/3 |
3520 reflections | (Δ/σ)max = 0.036 |
174 parameters | Δρmax = 0.50 e Å−3 |
4 restraints | Δρmin = −0.58 e Å−3 |
[Cu(C9H9N2O2)Cl]·2H2O | γ = 81.903 (13)° |
Mr = 312.20 | V = 603.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.762 (2) Å | Mo Kα radiation |
b = 8.987 (2) Å | µ = 2.04 mm−1 |
c = 10.312 (3) Å | T = 173 K |
α = 76.940 (11)° | 0.16 × 0.12 × 0.10 mm |
β = 84.645 (12)° |
Nonius KappaCCD diffractometer | 3036 reflections with I > 2σ(I) |
5193 measured reflections | Rint = 0.021 |
3520 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 4 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.50 e Å−3 |
3520 reflections | Δρmin = −0.58 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.70935 (3) | 0.12114 (2) | 0.20663 (2) | 0.01876 (7) | |
Cl1 | 0.59285 (8) | 0.32377 (5) | 0.29307 (5) | 0.02773 (12) | |
O1 | 0.6694 (2) | 0.22971 (14) | 0.02897 (14) | 0.0247 (3) | |
O2 | 0.7955 (2) | −0.00478 (15) | 0.37823 (14) | 0.0238 (3) | |
O3 | 0.9689 (3) | −0.47969 (18) | 0.23882 (18) | 0.0330 (4) | |
O4 | 0.2576 (3) | 0.44891 (19) | 0.04512 (18) | 0.0342 (4) | |
N1 | 0.8652 (2) | −0.18532 (18) | 0.25675 (17) | 0.0200 (3) | |
H1 | 0.899 (4) | −0.273 (3) | 0.249 (3) | 0.032 (7)* | |
N2 | 0.7995 (2) | −0.07024 (16) | 0.15054 (15) | 0.0169 (3) | |
C1 | 0.6714 (3) | 0.1693 (2) | −0.07799 (19) | 0.0195 (4) | |
C2 | 0.6135 (3) | 0.2688 (2) | −0.1980 (2) | 0.0229 (4) | |
H2 | 0.5741 | 0.3749 | −0.1995 | 0.050* | |
C3 | 0.6125 (3) | 0.2164 (2) | −0.3137 (2) | 0.0251 (4) | |
H3 | 0.5735 | 0.2867 | −0.3934 | 0.050* | |
C4 | 0.6682 (3) | 0.0608 (2) | −0.3152 (2) | 0.0263 (4) | |
H4 | 0.6668 | 0.0249 | −0.3949 | 0.050* | |
C5 | 0.7249 (3) | −0.0390 (2) | −0.1993 (2) | 0.0231 (4) | |
H5 | 0.7630 | −0.1448 | −0.1998 | 0.050* | |
C6 | 0.7283 (3) | 0.0114 (2) | −0.07873 (19) | 0.0189 (4) | |
C7 | 0.7920 (3) | −0.1029 (2) | 0.03622 (19) | 0.0193 (4) | |
H7 | 0.8299 | −0.2062 | 0.0273 | 0.050* | |
C8 | 0.8581 (3) | −0.1417 (2) | 0.37220 (19) | 0.0210 (4) | |
C9 | 0.9213 (3) | −0.2590 (2) | 0.4927 (2) | 0.0286 (4) | |
H9A | 0.9653 | −0.3581 | 0.4679 | 0.050* | |
H9B | 0.8083 | −0.2698 | 0.5595 | 0.050* | |
H9C | 1.0320 | −0.2262 | 0.5298 | 0.050* | |
HW1 | 1.054 (4) | −0.504 (3) | 0.180 (2) | 0.050 (9)* | |
HW2 | 0.873 (4) | −0.529 (4) | 0.240 (4) | 0.089 (13)* | |
HW3 | 0.286 (5) | 0.539 (2) | 0.014 (3) | 0.067 (10)* | |
HW4 | 0.367 (4) | 0.398 (4) | 0.067 (4) | 0.076 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02308 (13) | 0.01631 (12) | 0.01686 (13) | −0.00064 (8) | −0.00474 (9) | −0.00321 (8) |
Cl1 | 0.0375 (3) | 0.0199 (2) | 0.0257 (3) | 0.00195 (19) | −0.0029 (2) | −0.00765 (18) |
O1 | 0.0400 (8) | 0.0171 (6) | 0.0174 (7) | −0.0032 (6) | −0.0073 (6) | −0.0024 (5) |
O2 | 0.0316 (8) | 0.0215 (6) | 0.0178 (7) | 0.0027 (5) | −0.0065 (6) | −0.0049 (5) |
O3 | 0.0398 (10) | 0.0234 (7) | 0.0359 (10) | −0.0038 (7) | −0.0016 (8) | −0.0069 (7) |
O4 | 0.0302 (9) | 0.0296 (8) | 0.0425 (10) | −0.0032 (7) | −0.0075 (7) | −0.0052 (7) |
N1 | 0.0234 (8) | 0.0161 (7) | 0.0192 (8) | −0.0002 (6) | −0.0047 (6) | −0.0013 (6) |
N2 | 0.0173 (7) | 0.0153 (7) | 0.0173 (8) | −0.0008 (5) | −0.0048 (6) | −0.0008 (6) |
C1 | 0.0191 (9) | 0.0223 (9) | 0.0176 (9) | −0.0052 (7) | −0.0017 (7) | −0.0034 (7) |
C2 | 0.0249 (10) | 0.0219 (9) | 0.0208 (10) | −0.0048 (7) | −0.0042 (8) | −0.0002 (7) |
C3 | 0.0233 (10) | 0.0341 (10) | 0.0167 (9) | −0.0066 (8) | −0.0031 (8) | −0.0003 (8) |
C4 | 0.0268 (10) | 0.0367 (11) | 0.0179 (10) | −0.0075 (8) | −0.0012 (8) | −0.0088 (8) |
C5 | 0.0223 (9) | 0.0263 (9) | 0.0223 (10) | −0.0042 (7) | −0.0001 (8) | −0.0087 (8) |
C6 | 0.0188 (8) | 0.0220 (9) | 0.0169 (9) | −0.0050 (7) | −0.0023 (7) | −0.0042 (7) |
C7 | 0.0190 (9) | 0.0190 (8) | 0.0204 (9) | −0.0028 (7) | −0.0018 (7) | −0.0049 (7) |
C8 | 0.0197 (9) | 0.0242 (9) | 0.0178 (9) | −0.0011 (7) | −0.0030 (7) | −0.0022 (7) |
C9 | 0.0357 (11) | 0.0271 (10) | 0.0198 (10) | 0.0008 (8) | −0.0066 (9) | 0.0009 (8) |
Cu1—O1 | 1.8951 (13) | C1—C6 | 1.419 (3) |
Cu1—N2 | 1.9373 (15) | C2—C3 | 1.380 (3) |
Cu1—O2 | 1.9628 (13) | C2—H2 | 0.9500 |
Cu1—Cl1 | 2.2203 (5) | C3—C4 | 1.399 (3) |
O1—C1 | 1.333 (2) | C3—H3 | 0.9500 |
O2—C8 | 1.257 (2) | C4—C5 | 1.373 (3) |
O3—HW1 | 0.837 (17) | C4—H4 | 0.9500 |
O3—HW2 | 0.837 (18) | C5—C6 | 1.420 (3) |
O4—HW3 | 0.840 (18) | C5—H5 | 0.9500 |
O4—HW4 | 0.835 (18) | C6—C7 | 1.438 (2) |
N1—C8 | 1.330 (2) | C7—H7 | 0.9500 |
N1—N2 | 1.384 (2) | C8—C9 | 1.489 (3) |
N1—H1 | 0.81 (3) | C9—H9A | 0.9800 |
N2—C7 | 1.285 (2) | C9—H9B | 0.9800 |
C1—C2 | 1.406 (3) | C9—H9C | 0.9800 |
O1—Cu1—N2 | 92.17 (6) | C2—C3—H3 | 119.6 |
O1—Cu1—O2 | 170.21 (6) | C4—C3—H3 | 119.6 |
N2—Cu1—O2 | 81.39 (6) | C5—C4—C3 | 118.78 (18) |
O1—Cu1—Cl1 | 93.63 (4) | C5—C4—H4 | 120.6 |
N2—Cu1—Cl1 | 173.31 (5) | C3—C4—H4 | 120.6 |
O2—Cu1—Cl1 | 93.27 (4) | C4—C5—C6 | 121.80 (18) |
C1—O1—Cu1 | 126.91 (11) | C4—C5—H5 | 119.1 |
C8—O2—Cu1 | 112.67 (12) | C6—C5—H5 | 119.1 |
HW1—O3—HW2 | 107 (3) | C1—C6—C5 | 119.09 (17) |
HW3—O4—HW4 | 104 (3) | C1—C6—C7 | 123.89 (17) |
C8—N1—N2 | 114.80 (15) | C5—C6—C7 | 117.02 (17) |
C8—N1—H1 | 123.0 (18) | N2—C7—C6 | 122.26 (16) |
N2—N1—H1 | 122.1 (18) | N2—C7—H7 | 118.9 |
C7—N2—N1 | 119.37 (15) | C6—C7—H7 | 118.9 |
C7—N2—Cu1 | 129.28 (12) | O2—C8—N1 | 119.94 (16) |
N1—N2—Cu1 | 111.15 (12) | O2—C8—C9 | 121.56 (18) |
O1—C1—C2 | 117.80 (17) | N1—C8—C9 | 118.49 (17) |
O1—C1—C6 | 124.33 (16) | C8—C9—H9A | 109.5 |
C2—C1—C6 | 117.88 (17) | C8—C9—H9B | 109.5 |
C3—C2—C1 | 121.67 (18) | H9A—C9—H9B | 109.5 |
C3—C2—H2 | 119.2 | C8—C9—H9C | 109.5 |
C1—C2—H2 | 119.2 | H9A—C9—H9C | 109.5 |
C2—C3—C4 | 120.79 (18) | H9B—C9—H9C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.81 (3) | 1.88 (3) | 2.683 (2) | 177 (3) |
O3—HW1···O4i | 0.84 (2) | 1.94 (2) | 2.777 (3) | 177 (3) |
O3—HW2···Cl1ii | 0.84 (2) | 2.41 (2) | 3.2333 (18) | 168 (4) |
O4—HW3···O1iii | 0.84 (2) | 2.09 (2) | 2.916 (2) | 169 (3) |
O4—HW4···O1 | 0.84 (2) | 2.43 (2) | 3.191 (2) | 153 (3) |
O4—HW4···Cl1 | 0.84 (2) | 2.80 (3) | 3.4648 (17) | 137 (3) |
Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C9H9N2O2)Cl]·2H2O |
Mr | 312.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 6.762 (2), 8.987 (2), 10.312 (3) |
α, β, γ (°) | 76.940 (11), 84.645 (12), 81.903 (13) |
V (Å3) | 603.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.04 |
Crystal size (mm) | 0.16 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5193, 3520, 3036 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.075, 1.06 |
No. of reflections | 3520 |
No. of parameters | 174 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.58 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Cu1—O1 | 1.8951 (13) | Cu1—O2 | 1.9628 (13) |
Cu1—N2 | 1.9373 (15) | Cu1—Cl1 | 2.2203 (5) |
O1—Cu1—N2 | 92.17 (6) | O1—Cu1—Cl1 | 93.63 (4) |
O1—Cu1—O2 | 170.21 (6) | N2—Cu1—Cl1 | 173.31 (5) |
N2—Cu1—O2 | 81.39 (6) | O2—Cu1—Cl1 | 93.27 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.81 (3) | 1.88 (3) | 2.683 (2) | 177 (3) |
O3—HW1···O4i | 0.837 (17) | 1.941 (18) | 2.777 (3) | 177 (3) |
O3—HW2···Cl1ii | 0.837 (18) | 2.41 (2) | 3.2333 (18) | 168 (4) |
O4—HW3···O1iii | 0.840 (18) | 2.087 (19) | 2.916 (2) | 169 (3) |
O4—HW4···O1 | 0.835 (18) | 2.43 (2) | 3.191 (2) | 153 (3) |
O4—HW4···Cl1 | 0.835 (18) | 2.80 (3) | 3.4648 (17) | 137 (3) |
Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).
References
Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38. CSD CrossRef CAS Web of Science Google Scholar
Chan, S. C., Koh, L. L., Leung, P.-H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101–108. CrossRef CAS Web of Science Google Scholar
Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155–162. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, R., Zhao, P., Tang, G. & Tao, Y. (2008). Acta Cryst. E64, m559. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius B. V., Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1855–m1856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title complex, (I), was prepared by the reaction of the Schiff base ligand N'-(2-hydroxybenzilidene)acetohydrazide with copper(II) chloride. The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Atom Cu1 is coordinated to two O-atoms and one N-atom from the Schiff base ligand and to one chloride atom. The Cu1-N and Cu1-O bond distances are similar to those observed in other CuII complexes of the same and similar tridentate ligands (Ainscough et al., 1998; Chan et al., 1995; Koh et al., 1998). The Cu1-Cl distance (2.2203 (5) Å) is similar to that observed in other copper(II) square-planar complexes (Li et al., 2008; Qiu & Wu, 2004). The two O donor atoms are in a trans arrangement with a O-Cu1-O angle of 170.21 (6)°. The angles around atom Cu1 are in the range of 81.39 (6) - 173.31 (5)°. The sum of the angles around atom Cu1 is 360.46°, suggesting that the geometry around the copper atom is distorted square-planar.
In the crystal structure of (I) there is an extensive intermolecular hydrogen bonding network (Fig. 2). N—H···O, O—H···O and O—H···Cl interactions (Table 2), involving the lattice water molecules, lead to the formation of a two-dimensional network parallel to the ab plane.