metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m160-m161

Chlorido[N′-(2-oxidobenzil­­idene)acetohydrazide-κ2O,N′,O′]copper(II) dihydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences, Université de Conakry, Conakry, Guinea
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 22 December 2008; accepted 2 January 2009; online 8 January 2009)

In the title complex, [Cu(C9H9N2O2)Cl]·2H2O, prepared from the Schiff base ligand N′-(2-hydroxy­benzil­idene)aceto­hydrazide and copper(II) chloride, the CuII atom is coord­inated by two O atoms and one N atom from the ligand and by a Cl atom in a distorted square-planar geometry. The two donor O atoms of the tridentate Schiff base ligand are in a trans arrangement. In the crystal structure, there is an extensive inter­molecular hydrogen-bonding network; N—H⋯O, O—H⋯O and O—H⋯Cl inter­actions, involving the uncoordinated water mol­ecules, lead to the formation of a two-dimensional network parallel to the ab plane.

Related literature

For related structures, see: Ainscough et al. (1998[Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27-38.]); Chan et al. (1995[Chan, S. C., Koh, L. L., Leung, P.-H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101-108.]); Koh et al. (1998[Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155-162.]). For similar square-planar copper(II) complexes, see: Li et al. (2008[Li, R., Zhao, P., Tang, G. & Tao, Y. (2008). Acta Cryst. E64, m559.]); Qiu & Wu (2004[Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1855-m1856.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9N2O2)Cl]·2H2O

  • Mr = 312.20

  • Triclinic, [P \overline 1]

  • a = 6.762 (2) Å

  • b = 8.987 (2) Å

  • c = 10.312 (3) Å

  • α = 76.940 (11)°

  • β = 84.645 (12)°

  • γ = 81.903 (13)°

  • V = 603.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 173 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5193 measured reflections

  • 3520 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.06

  • 3520 reflections

  • 174 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.8951 (13)
Cu1—N2 1.9373 (15)
Cu1—O2 1.9628 (13)
Cu1—Cl1 2.2203 (5)
O1—Cu1—N2 92.17 (6)
O1—Cu1—O2 170.21 (6)
N2—Cu1—O2 81.39 (6)
O1—Cu1—Cl1 93.63 (4)
N2—Cu1—Cl1 173.31 (5)
O2—Cu1—Cl1 93.27 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.81 (3) 1.88 (3) 2.683 (2) 177 (3)
O3—HW1⋯O4i 0.837 (17) 1.941 (18) 2.777 (3) 177 (3)
O3—HW2⋯Cl1ii 0.837 (18) 2.41 (2) 3.2333 (18) 168 (4)
O4—HW3⋯O1iii 0.840 (18) 2.087 (19) 2.916 (2) 169 (3)
O4—HW4⋯O1 0.835 (18) 2.43 (2) 3.191 (2) 153 (3)
O4—HW4⋯Cl1 0.835 (18) 2.80 (3) 3.4648 (17) 137 (3)
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius B. V., Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, (I), was prepared by the reaction of the Schiff base ligand N'-(2-hydroxybenzilidene)acetohydrazide with copper(II) chloride. The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Atom Cu1 is coordinated to two O-atoms and one N-atom from the Schiff base ligand and to one chloride atom. The Cu1-N and Cu1-O bond distances are similar to those observed in other CuII complexes of the same and similar tridentate ligands (Ainscough et al., 1998; Chan et al., 1995; Koh et al., 1998). The Cu1-Cl distance (2.2203 (5) Å) is similar to that observed in other copper(II) square-planar complexes (Li et al., 2008; Qiu & Wu, 2004). The two O donor atoms are in a trans arrangement with a O-Cu1-O angle of 170.21 (6)°. The angles around atom Cu1 are in the range of 81.39 (6) - 173.31 (5)°. The sum of the angles around atom Cu1 is 360.46°, suggesting that the geometry around the copper atom is distorted square-planar.

In the crystal structure of (I) there is an extensive intermolecular hydrogen bonding network (Fig. 2). N—H···O, O—H···O and O—H···Cl interactions (Table 2), involving the lattice water molecules, lead to the formation of a two-dimensional network parallel to the ab plane.

Related literature top

For related structures, see: Ainscough et al. (1998); Chan et al. (1995); Koh et al. (1998). For similar square-planar copper(II) complexes, see: Li et al. (2008); Qiu & Wu (2004).

Experimental top

To 0.356 g (2.0 mmol) of N'-(2-hydroxybenzilidene)acetohydrazide in 20 ml of ethanol was added a solution of copper chloride dihydrate (0.341 g, 2 mmol) in 10 ml of ethanol. The resulting mixture was refluxed for 1 h. After cooling the resulting solution was filtered, and the filtrate left for slow evaporation. Small green crystals of compound (I), suitable for X-ray analysis, was obtained in good yield (0.600 g; 96.0 %). IR (cm-1,KBr): 3490, 1675, 1640, 1620, 1580, 11570, 1465. UV (nm): 720, 600, 400. µeff = 1.80 µB. Conductance: Λ=13 S cm2 mol-1. Analysis calculated for C9H13ClCuN2O4: C 34.62, H 4.20, N 8.97 %; found: C 34.60, H 4.18, N 8.65 %.

Refinement top

The NH hydrogen atom was located in a difference Fourier map and freely refined: 0.81 (3) Å. The water H-atoms were located in difference Fourier maps and refined isotropically with the O-H distances retrainted to 0.88 (2) Å. The remainder of the H-atoms were placed in calculated positions and treated as riding atoms: C-H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of compound (I), showing the N—H···O, O—H···O and O—H···Cl hydrogen bonds as dashed lines (see Table 2 for details).
Chlorido[N'-(2-oxidobenzilidene)acetohydrazide- κ2O,N',O']copper(II) dihydrate top
Crystal data top
[Cu(C9H9N2O2)Cl]·2H2OZ = 2
Mr = 312.20F(000) = 318
Triclinic, P1Dx = 1.719 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.762 (2) ÅCell parameters from 2138 reflections
b = 8.987 (2) Åθ = 1.0–30.0°
c = 10.312 (3) ŵ = 2.04 mm1
α = 76.940 (11)°T = 173 K
β = 84.645 (12)°Prism, green
γ = 81.903 (13)°0.16 × 0.12 × 0.10 mm
V = 603.1 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
π [Please check] scansh = 98
5193 measured reflectionsk = 1212
3520 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[s2(Fo2) + (0.0139P)2 + 0.4006P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max = 0.036
174 parametersΔρmax = 0.50 e Å3
4 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu(C9H9N2O2)Cl]·2H2Oγ = 81.903 (13)°
Mr = 312.20V = 603.1 (3) Å3
Triclinic, P1Z = 2
a = 6.762 (2) ÅMo Kα radiation
b = 8.987 (2) ŵ = 2.04 mm1
c = 10.312 (3) ÅT = 173 K
α = 76.940 (11)°0.16 × 0.12 × 0.10 mm
β = 84.645 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3036 reflections with I > 2σ(I)
5193 measured reflectionsRint = 0.021
3520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
3520 reflectionsΔρmin = 0.58 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70935 (3)0.12114 (2)0.20663 (2)0.01876 (7)
Cl10.59285 (8)0.32377 (5)0.29307 (5)0.02773 (12)
O10.6694 (2)0.22971 (14)0.02897 (14)0.0247 (3)
O20.7955 (2)0.00478 (15)0.37823 (14)0.0238 (3)
O30.9689 (3)0.47969 (18)0.23882 (18)0.0330 (4)
O40.2576 (3)0.44891 (19)0.04512 (18)0.0342 (4)
N10.8652 (2)0.18532 (18)0.25675 (17)0.0200 (3)
H10.899 (4)0.273 (3)0.249 (3)0.032 (7)*
N20.7995 (2)0.07024 (16)0.15054 (15)0.0169 (3)
C10.6714 (3)0.1693 (2)0.07799 (19)0.0195 (4)
C20.6135 (3)0.2688 (2)0.1980 (2)0.0229 (4)
H20.57410.37490.19950.050*
C30.6125 (3)0.2164 (2)0.3137 (2)0.0251 (4)
H30.57350.28670.39340.050*
C40.6682 (3)0.0608 (2)0.3152 (2)0.0263 (4)
H40.66680.02490.39490.050*
C50.7249 (3)0.0390 (2)0.1993 (2)0.0231 (4)
H50.76300.14480.19980.050*
C60.7283 (3)0.0114 (2)0.07873 (19)0.0189 (4)
C70.7920 (3)0.1029 (2)0.03622 (19)0.0193 (4)
H70.82990.20620.02730.050*
C80.8581 (3)0.1417 (2)0.37220 (19)0.0210 (4)
C90.9213 (3)0.2590 (2)0.4927 (2)0.0286 (4)
H9A0.96530.35810.46790.050*
H9B0.80830.26980.55950.050*
H9C1.03200.22620.52980.050*
HW11.054 (4)0.504 (3)0.180 (2)0.050 (9)*
HW20.873 (4)0.529 (4)0.240 (4)0.089 (13)*
HW30.286 (5)0.539 (2)0.014 (3)0.067 (10)*
HW40.367 (4)0.398 (4)0.067 (4)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02308 (13)0.01631 (12)0.01686 (13)0.00064 (8)0.00474 (9)0.00321 (8)
Cl10.0375 (3)0.0199 (2)0.0257 (3)0.00195 (19)0.0029 (2)0.00765 (18)
O10.0400 (8)0.0171 (6)0.0174 (7)0.0032 (6)0.0073 (6)0.0024 (5)
O20.0316 (8)0.0215 (6)0.0178 (7)0.0027 (5)0.0065 (6)0.0049 (5)
O30.0398 (10)0.0234 (7)0.0359 (10)0.0038 (7)0.0016 (8)0.0069 (7)
O40.0302 (9)0.0296 (8)0.0425 (10)0.0032 (7)0.0075 (7)0.0052 (7)
N10.0234 (8)0.0161 (7)0.0192 (8)0.0002 (6)0.0047 (6)0.0013 (6)
N20.0173 (7)0.0153 (7)0.0173 (8)0.0008 (5)0.0048 (6)0.0008 (6)
C10.0191 (9)0.0223 (9)0.0176 (9)0.0052 (7)0.0017 (7)0.0034 (7)
C20.0249 (10)0.0219 (9)0.0208 (10)0.0048 (7)0.0042 (8)0.0002 (7)
C30.0233 (10)0.0341 (10)0.0167 (9)0.0066 (8)0.0031 (8)0.0003 (8)
C40.0268 (10)0.0367 (11)0.0179 (10)0.0075 (8)0.0012 (8)0.0088 (8)
C50.0223 (9)0.0263 (9)0.0223 (10)0.0042 (7)0.0001 (8)0.0087 (8)
C60.0188 (8)0.0220 (9)0.0169 (9)0.0050 (7)0.0023 (7)0.0042 (7)
C70.0190 (9)0.0190 (8)0.0204 (9)0.0028 (7)0.0018 (7)0.0049 (7)
C80.0197 (9)0.0242 (9)0.0178 (9)0.0011 (7)0.0030 (7)0.0022 (7)
C90.0357 (11)0.0271 (10)0.0198 (10)0.0008 (8)0.0066 (9)0.0009 (8)
Geometric parameters (Å, º) top
Cu1—O11.8951 (13)C1—C61.419 (3)
Cu1—N21.9373 (15)C2—C31.380 (3)
Cu1—O21.9628 (13)C2—H20.9500
Cu1—Cl12.2203 (5)C3—C41.399 (3)
O1—C11.333 (2)C3—H30.9500
O2—C81.257 (2)C4—C51.373 (3)
O3—HW10.837 (17)C4—H40.9500
O3—HW20.837 (18)C5—C61.420 (3)
O4—HW30.840 (18)C5—H50.9500
O4—HW40.835 (18)C6—C71.438 (2)
N1—C81.330 (2)C7—H70.9500
N1—N21.384 (2)C8—C91.489 (3)
N1—H10.81 (3)C9—H9A0.9800
N2—C71.285 (2)C9—H9B0.9800
C1—C21.406 (3)C9—H9C0.9800
O1—Cu1—N292.17 (6)C2—C3—H3119.6
O1—Cu1—O2170.21 (6)C4—C3—H3119.6
N2—Cu1—O281.39 (6)C5—C4—C3118.78 (18)
O1—Cu1—Cl193.63 (4)C5—C4—H4120.6
N2—Cu1—Cl1173.31 (5)C3—C4—H4120.6
O2—Cu1—Cl193.27 (4)C4—C5—C6121.80 (18)
C1—O1—Cu1126.91 (11)C4—C5—H5119.1
C8—O2—Cu1112.67 (12)C6—C5—H5119.1
HW1—O3—HW2107 (3)C1—C6—C5119.09 (17)
HW3—O4—HW4104 (3)C1—C6—C7123.89 (17)
C8—N1—N2114.80 (15)C5—C6—C7117.02 (17)
C8—N1—H1123.0 (18)N2—C7—C6122.26 (16)
N2—N1—H1122.1 (18)N2—C7—H7118.9
C7—N2—N1119.37 (15)C6—C7—H7118.9
C7—N2—Cu1129.28 (12)O2—C8—N1119.94 (16)
N1—N2—Cu1111.15 (12)O2—C8—C9121.56 (18)
O1—C1—C2117.80 (17)N1—C8—C9118.49 (17)
O1—C1—C6124.33 (16)C8—C9—H9A109.5
C2—C1—C6117.88 (17)C8—C9—H9B109.5
C3—C2—C1121.67 (18)H9A—C9—H9B109.5
C3—C2—H2119.2C8—C9—H9C109.5
C1—C2—H2119.2H9A—C9—H9C109.5
C2—C3—C4120.79 (18)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.81 (3)1.88 (3)2.683 (2)177 (3)
O3—HW1···O4i0.84 (2)1.94 (2)2.777 (3)177 (3)
O3—HW2···Cl1ii0.84 (2)2.41 (2)3.2333 (18)168 (4)
O4—HW3···O1iii0.84 (2)2.09 (2)2.916 (2)169 (3)
O4—HW4···O10.84 (2)2.43 (2)3.191 (2)153 (3)
O4—HW4···Cl10.84 (2)2.80 (3)3.4648 (17)137 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H9N2O2)Cl]·2H2O
Mr312.20
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.762 (2), 8.987 (2), 10.312 (3)
α, β, γ (°)76.940 (11), 84.645 (12), 81.903 (13)
V3)603.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5193, 3520, 3036
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.06
No. of reflections3520
No. of parameters174
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.58

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—O11.8951 (13)Cu1—O21.9628 (13)
Cu1—N21.9373 (15)Cu1—Cl12.2203 (5)
O1—Cu1—N292.17 (6)O1—Cu1—Cl193.63 (4)
O1—Cu1—O2170.21 (6)N2—Cu1—Cl1173.31 (5)
N2—Cu1—O281.39 (6)O2—Cu1—Cl193.27 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.81 (3)1.88 (3)2.683 (2)177 (3)
O3—HW1···O4i0.837 (17)1.941 (18)2.777 (3)177 (3)
O3—HW2···Cl1ii0.837 (18)2.41 (2)3.2333 (18)168 (4)
O4—HW3···O1iii0.840 (18)2.087 (19)2.916 (2)169 (3)
O4—HW4···O10.835 (18)2.43 (2)3.191 (2)153 (3)
O4—HW4···Cl10.835 (18)2.80 (3)3.4648 (17)137 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationAinscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationChan, S. C., Koh, L. L., Leung, P.-H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101–108.  CrossRef CAS Web of Science Google Scholar
First citationKoh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem. 72, 155–162.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, R., Zhao, P., Tang, G. & Tao, Y. (2008). Acta Cryst. E64, m559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius B. V., Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1855–m1856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m160-m161
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds