organic compounds
2-Benzoyl-1,1-diethyl-3-phenylguanidine
aDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan, bInstitute of Chemical Sciences, University of Peshawar, Peshwar-Pakistan, and cDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com
In the title tetrasubstituted guanidine, C18H21N3O, the guanidine and carbonyl groups are not coplanar, as reflected by the torsion angles involving the N=C atoms [17.6 (3), −141.68 (17) and 42.2 (3)°]. This is probably due to the absence of an intramolecular N—H⋯O hydrogen bond, forming a six-membered ring, and is commonly observed in this class of compounds. In the centrosymmetric dimers are formed via pairs of intermolecular N—H⋯O hydrogen bonds. The dihedral angles between the guanidine plane and the phenyl ring and benzoyl plane are38.06 (9) and 41.54 (7)°, respectively.
Related literature
For thiourea derivatives with biological activity, see: Berlinck (2002); Heys et al. (2000); Laeckmann et al. (2002); Kelley et al. (2001); Moroni et al. (2001); Ishikawa et al. (2002). For related structures, see: Murtaza et al. (2007, 2008); Cunha et al. (2005).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.
Supporting information
10.1107/S1600536809001469/su2090sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001469/su2090Isup2.hkl
N-Benzoyl-N'-phenylthiourea (0.512 g, 2 mmol), triethyl amine (0.56 ml, 4 mmol) and diethyl amine (0.11 mL, 2 mmol) dissolved in 20 ml dimethylformamide, were mixed with vigourous stirring at 5°C. Mercuric chloride (0.544 g, 2 mmol) was then added and the mixture vigorously stirred for 12 h. The progress of the reaction was monitored by TLC. When all the thiourea had been consumed, 20 mL of chloroform were added and the suspension was filtered through a cintered glass funnel to remove any residue (HgS) formed as a byproduct during the reaction. The solvent was evaporated under reduced pressure and the residue was dissolved in 20 mL of CH2Cl2. Other byproducts were extracted out with water (4× 30 mL). The organic phase was dried over anhydrous MgSO4 and then filtered. After filtration the solvent was evaporated and compound (I) was recrystallized in ethanol. Full spectroscopic and physical characterization will be reported elsewhere.
The N-H hydrogen atom was located in a difference Fourier map and freely refined: N-H = 0.90 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).C18H21N3O | F(000) = 632 |
Mr = 295.38 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 4060 reflections |
a = 10.472 (6) Å | θ = 6.3–55.0° |
b = 15.010 (8) Å | µ = 0.08 mm−1 |
c = 10.154 (6) Å | T = 113 K |
β = 102.992 (6)° | Block, colourless |
V = 1555.2 (15) Å3 | 0.50 × 0.40 × 0.30 mm |
Z = 4 |
Rigaku/MSC Mercury CCD diffractometer | 3239 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 14.62 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ω scans | h = −13→8 |
12318 measured reflections | k = −19→19 |
3556 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.27 | w = 1/[σ2(Fo2) + (0.0155P)2 + 1.0509P] where P = (Fo2 + 2Fc2)/3 |
3556 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C18H21N3O | V = 1555.2 (15) Å3 |
Mr = 295.38 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.472 (6) Å | µ = 0.08 mm−1 |
b = 15.010 (8) Å | T = 113 K |
c = 10.154 (6) Å | 0.50 × 0.40 × 0.30 mm |
β = 102.992 (6)° |
Rigaku/MSC Mercury CCD diffractometer | 3239 reflections with I > 2σ(I) |
12318 measured reflections | Rint = 0.042 |
3556 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.27 | Δρmax = 0.26 e Å−3 |
3556 reflections | Δρmin = −0.19 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.21836 (16) | 0.49684 (12) | 0.59825 (17) | 0.0158 (3) | |
N1 | 0.28409 (14) | 0.54983 (10) | 0.53093 (14) | 0.0174 (3) | |
N2 | 0.24622 (14) | 0.50194 (10) | 0.73344 (14) | 0.0172 (3) | |
N3 | 0.12913 (15) | 0.43370 (10) | 0.53944 (14) | 0.0171 (3) | |
H3 | 0.063 (2) | 0.4210 (15) | 0.580 (2) | 0.035 (6)* | |
C2 | 0.22449 (17) | 0.58833 (11) | 0.41264 (16) | 0.0162 (3) | |
O1 | 0.10437 (12) | 0.59798 (9) | 0.36752 (12) | 0.0208 (3) | |
C3 | 0.31721 (17) | 0.62748 (11) | 0.33424 (17) | 0.0168 (4) | |
C4 | 0.45097 (18) | 0.63592 (12) | 0.39163 (18) | 0.0201 (4) | |
H4 | 0.4854 | 0.6146 | 0.4806 | 0.024* | |
C5 | 0.53391 (19) | 0.67529 (13) | 0.31946 (19) | 0.0248 (4) | |
H5 | 0.6247 | 0.6810 | 0.3593 | 0.030* | |
C6 | 0.4846 (2) | 0.70640 (13) | 0.18924 (19) | 0.0249 (4) | |
H6 | 0.5414 | 0.7337 | 0.1402 | 0.030* | |
C7 | 0.35200 (19) | 0.69752 (12) | 0.13084 (18) | 0.0228 (4) | |
H7 | 0.3182 | 0.7184 | 0.0414 | 0.027* | |
C8 | 0.26838 (18) | 0.65820 (12) | 0.20278 (17) | 0.0195 (4) | |
H8 | 0.1777 | 0.6522 | 0.1623 | 0.023* | |
C9 | 0.32896 (18) | 0.57493 (13) | 0.80129 (18) | 0.0222 (4) | |
H9A | 0.3065 | 0.5871 | 0.8892 | 0.027* | |
H9B | 0.3097 | 0.6294 | 0.7455 | 0.027* | |
C10 | 0.47450 (19) | 0.55474 (14) | 0.82538 (19) | 0.0286 (4) | |
H10A | 0.4928 | 0.4974 | 0.8718 | 0.043* | |
H10B | 0.5243 | 0.6018 | 0.8814 | 0.043* | |
H10C | 0.5003 | 0.5521 | 0.7385 | 0.043* | |
C11 | 0.20739 (18) | 0.43504 (12) | 0.82325 (17) | 0.0202 (4) | |
H11A | 0.2858 | 0.4169 | 0.8922 | 0.024* | |
H11B | 0.1734 | 0.3816 | 0.7694 | 0.024* | |
C12 | 0.10328 (19) | 0.46898 (14) | 0.89432 (19) | 0.0262 (4) | |
H12A | 0.1380 | 0.5199 | 0.9518 | 0.039* | |
H12B | 0.0793 | 0.4213 | 0.9502 | 0.039* | |
H12C | 0.0256 | 0.4876 | 0.8267 | 0.039* | |
C13 | 0.12031 (17) | 0.39230 (11) | 0.41262 (16) | 0.0156 (3) | |
C14 | 0.22270 (18) | 0.39048 (12) | 0.34509 (17) | 0.0195 (4) | |
H14 | 0.3026 | 0.4205 | 0.3821 | 0.023* | |
C15 | 0.20751 (19) | 0.34464 (12) | 0.22372 (18) | 0.0225 (4) | |
H15 | 0.2771 | 0.3444 | 0.1777 | 0.027* | |
C16 | 0.09264 (19) | 0.29929 (12) | 0.16861 (18) | 0.0240 (4) | |
H16 | 0.0834 | 0.2680 | 0.0857 | 0.029* | |
C17 | −0.00860 (19) | 0.30017 (12) | 0.23605 (18) | 0.0227 (4) | |
H17 | −0.0876 | 0.2691 | 0.1993 | 0.027* | |
C18 | 0.00458 (17) | 0.34619 (12) | 0.35696 (17) | 0.0190 (4) | |
H18 | −0.0655 | 0.3464 | 0.4023 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0136 (8) | 0.0170 (8) | 0.0167 (8) | 0.0015 (7) | 0.0033 (6) | 0.0001 (6) |
N1 | 0.0168 (7) | 0.0203 (8) | 0.0156 (7) | −0.0023 (6) | 0.0049 (5) | 0.0008 (6) |
N2 | 0.0190 (7) | 0.0188 (7) | 0.0145 (7) | −0.0030 (6) | 0.0049 (6) | 0.0001 (6) |
N3 | 0.0158 (7) | 0.0209 (8) | 0.0153 (7) | −0.0029 (6) | 0.0053 (6) | 0.0002 (6) |
C2 | 0.0181 (9) | 0.0161 (8) | 0.0156 (8) | −0.0008 (7) | 0.0062 (7) | −0.0028 (6) |
O1 | 0.0167 (6) | 0.0247 (7) | 0.0217 (6) | 0.0005 (5) | 0.0058 (5) | 0.0048 (5) |
C3 | 0.0200 (9) | 0.0151 (8) | 0.0175 (8) | 0.0000 (7) | 0.0086 (7) | −0.0019 (6) |
C4 | 0.0210 (9) | 0.0198 (9) | 0.0201 (9) | −0.0001 (7) | 0.0059 (7) | 0.0017 (7) |
C5 | 0.0213 (9) | 0.0243 (10) | 0.0308 (10) | −0.0031 (8) | 0.0098 (8) | 0.0006 (8) |
C6 | 0.0304 (10) | 0.0207 (9) | 0.0291 (10) | −0.0032 (8) | 0.0180 (8) | 0.0001 (8) |
C7 | 0.0332 (11) | 0.0197 (9) | 0.0177 (8) | 0.0006 (8) | 0.0101 (8) | 0.0015 (7) |
C8 | 0.0221 (9) | 0.0189 (9) | 0.0181 (8) | 0.0001 (7) | 0.0060 (7) | −0.0009 (7) |
C9 | 0.0272 (10) | 0.0227 (9) | 0.0168 (8) | −0.0064 (8) | 0.0053 (7) | −0.0036 (7) |
C10 | 0.0258 (10) | 0.0346 (11) | 0.0234 (9) | −0.0083 (9) | 0.0011 (8) | −0.0010 (8) |
C11 | 0.0228 (9) | 0.0232 (9) | 0.0146 (8) | −0.0021 (7) | 0.0041 (7) | 0.0041 (7) |
C12 | 0.0269 (10) | 0.0337 (11) | 0.0205 (9) | −0.0046 (8) | 0.0105 (8) | 0.0014 (8) |
C13 | 0.0176 (8) | 0.0139 (8) | 0.0145 (8) | 0.0016 (7) | 0.0022 (6) | 0.0020 (6) |
C14 | 0.0167 (9) | 0.0217 (9) | 0.0202 (9) | −0.0014 (7) | 0.0044 (7) | −0.0008 (7) |
C15 | 0.0231 (9) | 0.0224 (9) | 0.0242 (9) | 0.0018 (7) | 0.0102 (7) | −0.0009 (7) |
C16 | 0.0339 (11) | 0.0197 (9) | 0.0183 (9) | −0.0010 (8) | 0.0056 (8) | −0.0035 (7) |
C17 | 0.0248 (10) | 0.0193 (9) | 0.0225 (9) | −0.0042 (7) | 0.0023 (7) | −0.0011 (7) |
C18 | 0.0172 (9) | 0.0200 (9) | 0.0201 (8) | −0.0007 (7) | 0.0049 (7) | 0.0022 (7) |
C1—N1 | 1.336 (2) | C9—H9A | 0.9900 |
C1—N2 | 1.340 (2) | C9—H9B | 0.9900 |
C1—N3 | 1.370 (2) | C10—H10A | 0.9800 |
N1—C2 | 1.352 (2) | C10—H10B | 0.9800 |
N2—C9 | 1.469 (2) | C10—H10C | 0.9800 |
N2—C11 | 1.474 (2) | C11—C12 | 1.524 (3) |
N3—C13 | 1.414 (2) | C11—H11A | 0.9900 |
N3—H3 | 0.90 (2) | C11—H11B | 0.9900 |
C2—O1 | 1.247 (2) | C12—H12A | 0.9800 |
C2—C3 | 1.506 (2) | C12—H12B | 0.9800 |
C3—C8 | 1.396 (2) | C12—H12C | 0.9800 |
C3—C4 | 1.397 (3) | C13—C14 | 1.397 (3) |
C4—C5 | 1.388 (3) | C13—C18 | 1.400 (2) |
C4—H4 | 0.9500 | C14—C15 | 1.389 (3) |
C5—C6 | 1.388 (3) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C15—C16 | 1.386 (3) |
C6—C7 | 1.388 (3) | C15—H15 | 0.9500 |
C6—H6 | 0.9500 | C16—C17 | 1.385 (3) |
C7—C8 | 1.392 (3) | C16—H16 | 0.9500 |
C7—H7 | 0.9500 | C17—C18 | 1.388 (3) |
C8—H8 | 0.9500 | C17—H17 | 0.9500 |
C9—C10 | 1.519 (3) | C18—H18 | 0.9500 |
N1—C1—N2 | 118.14 (15) | C9—C10—H10A | 109.5 |
N1—C1—N3 | 124.62 (15) | C9—C10—H10B | 109.5 |
N2—C1—N3 | 117.14 (15) | H10A—C10—H10B | 109.5 |
C1—N1—C2 | 121.38 (15) | C9—C10—H10C | 109.5 |
C1—N2—C9 | 119.52 (14) | H10A—C10—H10C | 109.5 |
C1—N2—C11 | 124.62 (15) | H10B—C10—H10C | 109.5 |
C9—N2—C11 | 115.71 (14) | N2—C11—C12 | 113.04 (15) |
C1—N3—C13 | 126.83 (15) | N2—C11—H11A | 109.0 |
C1—N3—H3 | 117.8 (15) | C12—C11—H11A | 109.0 |
C13—N3—H3 | 114.9 (14) | N2—C11—H11B | 109.0 |
O1—C2—N1 | 127.02 (16) | C12—C11—H11B | 109.0 |
O1—C2—C3 | 118.52 (16) | H11A—C11—H11B | 107.8 |
N1—C2—C3 | 114.36 (15) | C11—C12—H12A | 109.5 |
C8—C3—C4 | 119.10 (16) | C11—C12—H12B | 109.5 |
C8—C3—C2 | 119.54 (16) | H12A—C12—H12B | 109.5 |
C4—C3—C2 | 121.33 (16) | C11—C12—H12C | 109.5 |
C5—C4—C3 | 120.41 (17) | H12A—C12—H12C | 109.5 |
C5—C4—H4 | 119.8 | H12B—C12—H12C | 109.5 |
C3—C4—H4 | 119.8 | C14—C13—C18 | 118.86 (16) |
C6—C5—C4 | 120.22 (18) | C14—C13—N3 | 123.74 (16) |
C6—C5—H5 | 119.9 | C18—C13—N3 | 117.28 (16) |
C4—C5—H5 | 119.9 | C15—C14—C13 | 119.85 (17) |
C5—C6—C7 | 119.79 (17) | C15—C14—H14 | 120.1 |
C5—C6—H6 | 120.1 | C13—C14—H14 | 120.1 |
C7—C6—H6 | 120.1 | C16—C15—C14 | 121.16 (18) |
C6—C7—C8 | 120.23 (17) | C16—C15—H15 | 119.4 |
C6—C7—H7 | 119.9 | C14—C15—H15 | 119.4 |
C8—C7—H7 | 119.9 | C17—C16—C15 | 119.13 (17) |
C7—C8—C3 | 120.24 (17) | C17—C16—H16 | 120.4 |
C7—C8—H8 | 119.9 | C15—C16—H16 | 120.4 |
C3—C8—H8 | 119.9 | C16—C17—C18 | 120.46 (17) |
N2—C9—C10 | 113.05 (16) | C16—C17—H17 | 119.8 |
N2—C9—H9A | 109.0 | C18—C17—H17 | 119.8 |
C10—C9—H9A | 109.0 | C17—C18—C13 | 120.53 (17) |
N2—C9—H9B | 109.0 | C17—C18—H18 | 119.7 |
C10—C9—H9B | 109.0 | C13—C18—H18 | 119.7 |
H9A—C9—H9B | 107.8 | ||
N2—C1—N1—C2 | −141.68 (17) | C5—C6—C7—C8 | 0.5 (3) |
N3—C1—N1—C2 | 42.2 (3) | C6—C7—C8—C3 | 0.1 (3) |
N1—C1—N2—C9 | 10.7 (2) | C4—C3—C8—C7 | −0.7 (3) |
N3—C1—N2—C9 | −172.82 (15) | C2—C3—C8—C7 | 177.63 (16) |
N1—C1—N2—C11 | −164.64 (16) | C1—N2—C9—C10 | −85.7 (2) |
N3—C1—N2—C11 | 11.8 (2) | C11—N2—C9—C10 | 90.06 (19) |
N1—C1—N3—C13 | 22.4 (3) | C1—N2—C11—C12 | −110.70 (19) |
N2—C1—N3—C13 | −153.84 (16) | C9—N2—C11—C12 | 73.8 (2) |
C1—N1—C2—O1 | 17.6 (3) | C1—N3—C13—C14 | 19.1 (3) |
C1—N1—C2—C3 | −166.17 (15) | C1—N3—C13—C18 | −164.97 (16) |
O1—C2—C3—C8 | −12.0 (2) | C18—C13—C14—C15 | 1.1 (3) |
N1—C2—C3—C8 | 171.40 (16) | N3—C13—C14—C15 | 176.97 (16) |
O1—C2—C3—C4 | 166.25 (16) | C13—C14—C15—C16 | −0.9 (3) |
N1—C2—C3—C4 | −10.3 (2) | C14—C15—C16—C17 | 0.2 (3) |
C8—C3—C4—C5 | 0.8 (3) | C15—C16—C17—C18 | 0.3 (3) |
C2—C3—C4—C5 | −177.53 (16) | C16—C17—C18—C13 | −0.1 (3) |
C3—C4—C5—C6 | −0.2 (3) | C14—C13—C18—C17 | −0.6 (3) |
C4—C5—C6—C7 | −0.4 (3) | N3—C13—C18—C17 | −176.78 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.90 (2) | 1.97 (2) | 2.852 (2) | 168 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H21N3O |
Mr | 295.38 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 10.472 (6), 15.010 (8), 10.154 (6) |
β (°) | 102.992 (6) |
V (Å3) | 1555.2 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12318, 3556, 3239 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.112, 1.27 |
No. of reflections | 3556 |
No. of parameters | 205 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.19 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.90 (2) | 1.97 (2) | 2.852 (2) | 168 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
MKR is grateful to the HEC-Pakistan for financial support for the Ph D program under scholarship No. [ILC–0363104].
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649. Web of Science CrossRef PubMed CAS Google Scholar
Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540. Web of Science CSD CrossRef CAS Google Scholar
Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57–67. Web of Science CrossRef CAS Google Scholar
Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557. CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kelley, M. T., Burckstummer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharm. 60, 1210–1225. CAS Google Scholar
Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Geczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793–1804. Web of Science CrossRef PubMed CAS Google Scholar
Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133. Web of Science CrossRef PubMed CAS Google Scholar
Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Guanidines are important compounds that have many biological, chemical and medicinal applications (Berlinck et al., 2002; Heys et al., 2000). They have received increasing interest as medicinal agents with antitumour, anti-hypertensive, anti-glaucoma and cardiotonic activities (Laeckmann et al., 2002; Kelley et al., 2001; Moroni et al., 2001). Due to their strongly basic character, they can be considered as super-bases that readily undergo protonation to generate resonance-stabilized guanidinium cations (Ishikawa et al., 2002).
The molecular structure of the title compound, (I), is illustrated in Fig. 1. It is a typical N',N,N,N''-Tetrasubstituted guanidine with normal geometrical parameters (Murtaza et al., 2007, 2008; Cunha et al., 2005). The carbonyl bond (C2═O1) shows the expected full double bond character, while the shorter values for bonds C2—N1, N1-C1, C1—N2, and C1—N3 indicate partial double bond character. The dihedral angles between the guanidine mean plane (C1/N1/N2/N3), and the phenyl ring (C13–C18), the benzoyl ring (C3-C8,C2,O1) and the N2/C9/C11 plane, are 38.06 (9)°, 41.54 (7)°, and 11.97 (13)°, respectively. The guanidine moiety and the carbonyl group are not co-planar, as reflected by the torsion angles C1—N1—C2—O1 = 17.6 (3)°, N2—C1—N1—C2 = -141.68 (17)°, and N3—C1—N1—C2 = 42.2 (3)°. This is probably due to the absence of an intramolecular N—H···O hydrogen bond, forming a six-membered ring, and commonly observed in this class of compounds (Cunha et al., 2005).
The crystal packing shows intermolecular N—H···O hydrogen bonds which result in the formation of centrosymmetric dimers (Fig. 2).