organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl-1,1-di­ethyl-3-phenyl­guanidine

aDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan, bInstitute of Chemical Sciences, University of Peshawar, Peshwar-Pakistan, and cDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 9 January 2009; accepted 12 January 2009; online 17 January 2009)

In the title tetrasubstituted guanidine, C18H21N3O, the guanidine and carbonyl groups are not coplanar, as reflected by the torsion angles involving the N=C atoms [17.6 (3), −141.68 (17) and 42.2 (3)°]. This is probably due to the absence of an intra­molecular N—H⋯O hydrogen bond, forming a six-membered ring, and is commonly observed in this class of compounds. In the crystal structure, centrosymmetric dimers are formed via pairs of inter­molecular N—H⋯O hydrogen bonds. The dihedral angles between the guanidine plane and the phenyl ring and benzoyl plane are38.06 (9) and 41.54 (7)°, respectively.

Related literature

For thio­urea derivatives with biological activity, see: Berlinck (2002[Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617-649.]); Heys et al. (2000[Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57-67. ]); Laeckmann et al. (2002[Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Geczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793-1804.]); Kelley et al. (2001[Kelley, M. T., Burckstummer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharm. 60, 1210-1225.]); Moroni et al. (2001[Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130-133.]); Ishikawa et al. (2002[Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552-557.]). For related structures, see: Murtaza et al. (2007[Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664.], 2008[Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333.]); Cunha et al. (2005[Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536-10540.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O

  • Mr = 295.38

  • Monoclinic, P 21 /c

  • a = 10.472 (6) Å

  • b = 15.010 (8) Å

  • c = 10.154 (6) Å

  • β = 102.992 (6)°

  • V = 1555.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 (2) K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 12318 measured reflections

  • 3556 independent reflections

  • 3239 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.112

  • S = 1.27

  • 3556 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.90 (2) 1.97 (2) 2.852 (2) 168 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Guanidines are important compounds that have many biological, chemical and medicinal applications (Berlinck et al., 2002; Heys et al., 2000). They have received increasing interest as medicinal agents with antitumour, anti-hypertensive, anti-glaucoma and cardiotonic activities (Laeckmann et al., 2002; Kelley et al., 2001; Moroni et al., 2001). Due to their strongly basic character, they can be considered as super-bases that readily undergo protonation to generate resonance-stabilized guanidinium cations (Ishikawa et al., 2002).

The molecular structure of the title compound, (I), is illustrated in Fig. 1. It is a typical N',N,N,N''-Tetrasubstituted guanidine with normal geometrical parameters (Murtaza et al., 2007, 2008; Cunha et al., 2005). The carbonyl bond (C2O1) shows the expected full double bond character, while the shorter values for bonds C2—N1, N1-C1, C1—N2, and C1—N3 indicate partial double bond character. The dihedral angles between the guanidine mean plane (C1/N1/N2/N3), and the phenyl ring (C13–C18), the benzoyl ring (C3-C8,C2,O1) and the N2/C9/C11 plane, are 38.06 (9)°, 41.54 (7)°, and 11.97 (13)°, respectively. The guanidine moiety and the carbonyl group are not co-planar, as reflected by the torsion angles C1—N1—C2—O1 = 17.6 (3)°, N2—C1—N1—C2 = -141.68 (17)°, and N3—C1—N1—C2 = 42.2 (3)°. This is probably due to the absence of an intramolecular N—H···O hydrogen bond, forming a six-membered ring, and commonly observed in this class of compounds (Cunha et al., 2005).

The crystal packing shows intermolecular N—H···O hydrogen bonds which result in the formation of centrosymmetric dimers (Fig. 2).

Related literature top

For thiourea derivatives with biological activity, see: Berlinck (2002); Heys et al. (2000); Laeckmann et al. (2002); Kelley et al. (2001); Moroni et al. (2001); Ishikawa et al. (2002). For related structures, see: Murtaza et al. (2007, 2008); Cunha et al. (2005).

Experimental top

N-Benzoyl-N'-phenylthiourea (0.512 g, 2 mmol), triethyl amine (0.56 ml, 4 mmol) and diethyl amine (0.11 mL, 2 mmol) dissolved in 20 ml dimethylformamide, were mixed with vigourous stirring at 5°C. Mercuric chloride (0.544 g, 2 mmol) was then added and the mixture vigorously stirred for 12 h. The progress of the reaction was monitored by TLC. When all the thiourea had been consumed, 20 mL of chloroform were added and the suspension was filtered through a cintered glass funnel to remove any residue (HgS) formed as a byproduct during the reaction. The solvent was evaporated under reduced pressure and the residue was dissolved in 20 mL of CH2Cl2. Other byproducts were extracted out with water (4× 30 mL). The organic phase was dried over anhydrous MgSO4 and then filtered. After filtration the solvent was evaporated and compound (I) was recrystallized in ethanol. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

The N-H hydrogen atom was located in a difference Fourier map and freely refined: N-H = 0.90 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric hydrogen-bonded dimer structure of compound (I) [Hydrogen bonds shown as dashed lines; symmetry code: (i) -x, 1 - y, 1 - z].
2-Benzoyl-1,1-diethyl-3-phenylguanidine top
Crystal data top
C18H21N3OF(000) = 632
Mr = 295.38Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4060 reflections
a = 10.472 (6) Åθ = 6.3–55.0°
b = 15.010 (8) ŵ = 0.08 mm1
c = 10.154 (6) ÅT = 113 K
β = 102.992 (6)°Block, colourless
V = 1555.2 (15) Å30.50 × 0.40 × 0.30 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 138
12318 measured reflectionsk = 1919
3556 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0155P)2 + 1.0509P]
where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H21N3OV = 1555.2 (15) Å3
Mr = 295.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.472 (6) ŵ = 0.08 mm1
b = 15.010 (8) ÅT = 113 K
c = 10.154 (6) Å0.50 × 0.40 × 0.30 mm
β = 102.992 (6)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3239 reflections with I > 2σ(I)
12318 measured reflectionsRint = 0.042
3556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.26 e Å3
3556 reflectionsΔρmin = 0.19 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21836 (16)0.49684 (12)0.59825 (17)0.0158 (3)
N10.28409 (14)0.54983 (10)0.53093 (14)0.0174 (3)
N20.24622 (14)0.50194 (10)0.73344 (14)0.0172 (3)
N30.12913 (15)0.43370 (10)0.53944 (14)0.0171 (3)
H30.063 (2)0.4210 (15)0.580 (2)0.035 (6)*
C20.22449 (17)0.58833 (11)0.41264 (16)0.0162 (3)
O10.10437 (12)0.59798 (9)0.36752 (12)0.0208 (3)
C30.31721 (17)0.62748 (11)0.33424 (17)0.0168 (4)
C40.45097 (18)0.63592 (12)0.39163 (18)0.0201 (4)
H40.48540.61460.48060.024*
C50.53391 (19)0.67529 (13)0.31946 (19)0.0248 (4)
H50.62470.68100.35930.030*
C60.4846 (2)0.70640 (13)0.18924 (19)0.0249 (4)
H60.54140.73370.14020.030*
C70.35200 (19)0.69752 (12)0.13084 (18)0.0228 (4)
H70.31820.71840.04140.027*
C80.26838 (18)0.65820 (12)0.20278 (17)0.0195 (4)
H80.17770.65220.16230.023*
C90.32896 (18)0.57493 (13)0.80129 (18)0.0222 (4)
H9A0.30650.58710.88920.027*
H9B0.30970.62940.74550.027*
C100.47450 (19)0.55474 (14)0.82538 (19)0.0286 (4)
H10A0.49280.49740.87180.043*
H10B0.52430.60180.88140.043*
H10C0.50030.55210.73850.043*
C110.20739 (18)0.43504 (12)0.82325 (17)0.0202 (4)
H11A0.28580.41690.89220.024*
H11B0.17340.38160.76940.024*
C120.10328 (19)0.46898 (14)0.89432 (19)0.0262 (4)
H12A0.13800.51990.95180.039*
H12B0.07930.42130.95020.039*
H12C0.02560.48760.82670.039*
C130.12031 (17)0.39230 (11)0.41262 (16)0.0156 (3)
C140.22270 (18)0.39048 (12)0.34509 (17)0.0195 (4)
H140.30260.42050.38210.023*
C150.20751 (19)0.34464 (12)0.22372 (18)0.0225 (4)
H150.27710.34440.17770.027*
C160.09264 (19)0.29929 (12)0.16861 (18)0.0240 (4)
H160.08340.26800.08570.029*
C170.00860 (19)0.30017 (12)0.23605 (18)0.0227 (4)
H170.08760.26910.19930.027*
C180.00458 (17)0.34619 (12)0.35696 (17)0.0190 (4)
H180.06550.34640.40230.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (8)0.0170 (8)0.0167 (8)0.0015 (7)0.0033 (6)0.0001 (6)
N10.0168 (7)0.0203 (8)0.0156 (7)0.0023 (6)0.0049 (5)0.0008 (6)
N20.0190 (7)0.0188 (7)0.0145 (7)0.0030 (6)0.0049 (6)0.0001 (6)
N30.0158 (7)0.0209 (8)0.0153 (7)0.0029 (6)0.0053 (6)0.0002 (6)
C20.0181 (9)0.0161 (8)0.0156 (8)0.0008 (7)0.0062 (7)0.0028 (6)
O10.0167 (6)0.0247 (7)0.0217 (6)0.0005 (5)0.0058 (5)0.0048 (5)
C30.0200 (9)0.0151 (8)0.0175 (8)0.0000 (7)0.0086 (7)0.0019 (6)
C40.0210 (9)0.0198 (9)0.0201 (9)0.0001 (7)0.0059 (7)0.0017 (7)
C50.0213 (9)0.0243 (10)0.0308 (10)0.0031 (8)0.0098 (8)0.0006 (8)
C60.0304 (10)0.0207 (9)0.0291 (10)0.0032 (8)0.0180 (8)0.0001 (8)
C70.0332 (11)0.0197 (9)0.0177 (8)0.0006 (8)0.0101 (8)0.0015 (7)
C80.0221 (9)0.0189 (9)0.0181 (8)0.0001 (7)0.0060 (7)0.0009 (7)
C90.0272 (10)0.0227 (9)0.0168 (8)0.0064 (8)0.0053 (7)0.0036 (7)
C100.0258 (10)0.0346 (11)0.0234 (9)0.0083 (9)0.0011 (8)0.0010 (8)
C110.0228 (9)0.0232 (9)0.0146 (8)0.0021 (7)0.0041 (7)0.0041 (7)
C120.0269 (10)0.0337 (11)0.0205 (9)0.0046 (8)0.0105 (8)0.0014 (8)
C130.0176 (8)0.0139 (8)0.0145 (8)0.0016 (7)0.0022 (6)0.0020 (6)
C140.0167 (9)0.0217 (9)0.0202 (9)0.0014 (7)0.0044 (7)0.0008 (7)
C150.0231 (9)0.0224 (9)0.0242 (9)0.0018 (7)0.0102 (7)0.0009 (7)
C160.0339 (11)0.0197 (9)0.0183 (9)0.0010 (8)0.0056 (8)0.0035 (7)
C170.0248 (10)0.0193 (9)0.0225 (9)0.0042 (7)0.0023 (7)0.0011 (7)
C180.0172 (9)0.0200 (9)0.0201 (8)0.0007 (7)0.0049 (7)0.0022 (7)
Geometric parameters (Å, º) top
C1—N11.336 (2)C9—H9A0.9900
C1—N21.340 (2)C9—H9B0.9900
C1—N31.370 (2)C10—H10A0.9800
N1—C21.352 (2)C10—H10B0.9800
N2—C91.469 (2)C10—H10C0.9800
N2—C111.474 (2)C11—C121.524 (3)
N3—C131.414 (2)C11—H11A0.9900
N3—H30.90 (2)C11—H11B0.9900
C2—O11.247 (2)C12—H12A0.9800
C2—C31.506 (2)C12—H12B0.9800
C3—C81.396 (2)C12—H12C0.9800
C3—C41.397 (3)C13—C141.397 (3)
C4—C51.388 (3)C13—C181.400 (2)
C4—H40.9500C14—C151.389 (3)
C5—C61.388 (3)C14—H140.9500
C5—H50.9500C15—C161.386 (3)
C6—C71.388 (3)C15—H150.9500
C6—H60.9500C16—C171.385 (3)
C7—C81.392 (3)C16—H160.9500
C7—H70.9500C17—C181.388 (3)
C8—H80.9500C17—H170.9500
C9—C101.519 (3)C18—H180.9500
N1—C1—N2118.14 (15)C9—C10—H10A109.5
N1—C1—N3124.62 (15)C9—C10—H10B109.5
N2—C1—N3117.14 (15)H10A—C10—H10B109.5
C1—N1—C2121.38 (15)C9—C10—H10C109.5
C1—N2—C9119.52 (14)H10A—C10—H10C109.5
C1—N2—C11124.62 (15)H10B—C10—H10C109.5
C9—N2—C11115.71 (14)N2—C11—C12113.04 (15)
C1—N3—C13126.83 (15)N2—C11—H11A109.0
C1—N3—H3117.8 (15)C12—C11—H11A109.0
C13—N3—H3114.9 (14)N2—C11—H11B109.0
O1—C2—N1127.02 (16)C12—C11—H11B109.0
O1—C2—C3118.52 (16)H11A—C11—H11B107.8
N1—C2—C3114.36 (15)C11—C12—H12A109.5
C8—C3—C4119.10 (16)C11—C12—H12B109.5
C8—C3—C2119.54 (16)H12A—C12—H12B109.5
C4—C3—C2121.33 (16)C11—C12—H12C109.5
C5—C4—C3120.41 (17)H12A—C12—H12C109.5
C5—C4—H4119.8H12B—C12—H12C109.5
C3—C4—H4119.8C14—C13—C18118.86 (16)
C6—C5—C4120.22 (18)C14—C13—N3123.74 (16)
C6—C5—H5119.9C18—C13—N3117.28 (16)
C4—C5—H5119.9C15—C14—C13119.85 (17)
C5—C6—C7119.79 (17)C15—C14—H14120.1
C5—C6—H6120.1C13—C14—H14120.1
C7—C6—H6120.1C16—C15—C14121.16 (18)
C6—C7—C8120.23 (17)C16—C15—H15119.4
C6—C7—H7119.9C14—C15—H15119.4
C8—C7—H7119.9C17—C16—C15119.13 (17)
C7—C8—C3120.24 (17)C17—C16—H16120.4
C7—C8—H8119.9C15—C16—H16120.4
C3—C8—H8119.9C16—C17—C18120.46 (17)
N2—C9—C10113.05 (16)C16—C17—H17119.8
N2—C9—H9A109.0C18—C17—H17119.8
C10—C9—H9A109.0C17—C18—C13120.53 (17)
N2—C9—H9B109.0C17—C18—H18119.7
C10—C9—H9B109.0C13—C18—H18119.7
H9A—C9—H9B107.8
N2—C1—N1—C2141.68 (17)C5—C6—C7—C80.5 (3)
N3—C1—N1—C242.2 (3)C6—C7—C8—C30.1 (3)
N1—C1—N2—C910.7 (2)C4—C3—C8—C70.7 (3)
N3—C1—N2—C9172.82 (15)C2—C3—C8—C7177.63 (16)
N1—C1—N2—C11164.64 (16)C1—N2—C9—C1085.7 (2)
N3—C1—N2—C1111.8 (2)C11—N2—C9—C1090.06 (19)
N1—C1—N3—C1322.4 (3)C1—N2—C11—C12110.70 (19)
N2—C1—N3—C13153.84 (16)C9—N2—C11—C1273.8 (2)
C1—N1—C2—O117.6 (3)C1—N3—C13—C1419.1 (3)
C1—N1—C2—C3166.17 (15)C1—N3—C13—C18164.97 (16)
O1—C2—C3—C812.0 (2)C18—C13—C14—C151.1 (3)
N1—C2—C3—C8171.40 (16)N3—C13—C14—C15176.97 (16)
O1—C2—C3—C4166.25 (16)C13—C14—C15—C160.9 (3)
N1—C2—C3—C410.3 (2)C14—C15—C16—C170.2 (3)
C8—C3—C4—C50.8 (3)C15—C16—C17—C180.3 (3)
C2—C3—C4—C5177.53 (16)C16—C17—C18—C130.1 (3)
C3—C4—C5—C60.2 (3)C14—C13—C18—C170.6 (3)
C4—C5—C6—C70.4 (3)N3—C13—C18—C17176.78 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.90 (2)1.97 (2)2.852 (2)168 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H21N3O
Mr295.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.472 (6), 15.010 (8), 10.154 (6)
β (°) 102.992 (6)
V3)1555.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12318, 3556, 3239
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.112, 1.27
No. of reflections3556
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.90 (2)1.97 (2)2.852 (2)168 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MKR is grateful to the HEC-Pakistan for financial support for the Ph D program under scholarship No. [ILC–0363104].

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57–67.   Web of Science CrossRef CAS Google Scholar
First citationIshikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557.  CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKelley, M. T., Burckstummer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharm. 60, 1210–1225.  CAS Google Scholar
First citationLaeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Geczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793–1804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds