organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl 2-(5-bromo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 18 December 2008; accepted 25 December 2008; online 8 January 2009)

In the title compound, C15H17BrO4S, the methyl­sulfinyl O atom and the methyl substituents lie on opposite sides of the plane through the benzofuran fragment. The crystal structure is stabilized by ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.698 (4) Å], and by C—H⋯π inter­actions between a methyl­ene H atom of the butyl group and the benzene ring of the benzofuran system. Additionally, the crystal structure exhibits weak inter­molecular C—H⋯O contacts. The butyl group is disordered over two positions, with site-occupancy factors, from refinement, of 0.720 (8) and 0.280 (8).

Related literature

For the crystal structures of similar alkyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17BrO4S

  • Mr = 373.26

  • Triclinic, [P \overline 1]

  • a = 8.420 (1) Å

  • b = 10.255 (1) Å

  • c = 10.306 (1) Å

  • α = 97.503 (2)°

  • β = 99.711 (2)°

  • γ = 108.678 (2)°

  • V = 814.55 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 298 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.353, Tmax = 0.451

  • 6560 measured reflections

  • 3179 independent reflections

  • 2645 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.14

  • 3179 reflections

  • 229 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12ACgi 0.97 2.78 3.698 (5) 158
C5—H5⋯O3ii 0.93 2.55 3.405 (3) 153
C9—H9B⋯O4iii 0.97 2.30 3.248 (3) 167
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, viz. isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Herein, we describe the crystal structure of the title compound, (I).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The butyl group is disordered over two positions with site-occupancy factors of 0.720 (8) (for atoms labelled B) and 0.280 (8) (B) in Fig. 1. The molecular packing is stabilized by intermolecular ππ interactions: the Cg···Cgii distance is 3.698 (4) Å, where Cg is the centroid of the C2–C7 ring, symmetry code as in Fig. 2. The molecular packing is further stabilized by C—H···π interactions between the methylene-H and the benzene ring of the benzofuran system, with a C12A—H12A···Cgi separation of 2.78 Å, Table 1; Cg is the centroid of the C2–C7 benzene ring. In addition, weak intermolecular C—H···O contacts are observed, Table 1. One C-H···O contact occurs between a benzene-H and the O3-oxygen, and a second between a methylene-H and the O4-oxygen atom.

Related literature top

For the crystal structures of similar alkyl 2-(5-bromo-3-methylsulfinyl-1- benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (148 mg, 0.66 mmol) was added in small portions to a stirred solution of butyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (214 mg, 0.6 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford (I) as a colorless solid [yield 80%, m.p. 381–382 K; Rf = 0.65 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals were obtained by evaporation of an acetone solution of (I). Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.92 (t, J = 7.32 Hz, 3H), 1.31–1.41 (m, 2H), 1.59–1.67 (m, 2H), 3.07 (s, 3H), 4.04 (s, 2H), 4.15 (t, J = 6.6 Hz, 2H), 7.39 (d, J = 8.8 Hz, 1H), 7.49 (dd, J = 8.8 Hz and J = 2.2 Hz, 1H), 8.11 (d, J = 1.84 Hz, 1H); EI—MS 374 [M+2], 372 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aryl-, 0.97 Å for methylene-, and 0.96 Å for methyl-H atoms, and with Uiso(H) = 1.2Ueq(C) for the aryl- and methylene-H atoms, and 1.5Ueq(C) for methyl-H atoms. The butyl group was found to be disordered over two positions and modelled with site-occupancy factors, from refinement, of 0.720 (8) (C11A–C14A)) and 0.280 (8) (C11B–C14B). The displacement ellipsoids of part B part were restrained using command ISOR (0.01), both sets of C atoms were restrained using the command DELU, and the C—C distances were restrained to 1.480 (2) Å using command DFIX.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. The butyl group is disordered over two positions with the major component having a site occupancy = 0.720 (8).
[Figure 2] Fig. 2. Diagram illustrating the ππ, C—H···π and C—H···O interactions (dotted lines) in the crystal structure of (I). Cg denotes a ring centroid. The disordered component of the butyl group, part B, has been omitted for clarity as have H atoms not involved in intermolecular contacts. Symmetry codes: (i) x + 1, y + 1, z; (ii) -x, 1 - y, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z; (v) x - 1, y - 1, z.
Butyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C15H17BrO4SZ = 2
Mr = 373.26F(000) = 380
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.420 (1) ÅCell parameters from 3446 reflections
b = 10.255 (1) Åθ = 2.6–27.0°
c = 10.306 (1) ŵ = 2.66 mm1
α = 97.503 (2)°T = 298 K
β = 99.711 (2)°Block, colorless
γ = 108.678 (2)°0.40 × 0.40 × 0.30 mm
V = 814.55 (15) Å3
Data collection top
Bruker SMART CCD
diffractometer
3179 independent reflections
Radiation source: fine-focus sealed tube2645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.353, Tmax = 0.451l = 1212
6560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2004P]
where P = (Fo2 + 2Fc2)/3
3179 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.30 e Å3
64 restraintsΔρmin = 0.50 e Å3
Crystal data top
C15H17BrO4Sγ = 108.678 (2)°
Mr = 373.26V = 814.55 (15) Å3
Triclinic, P1Z = 2
a = 8.420 (1) ÅMo Kα radiation
b = 10.255 (1) ŵ = 2.66 mm1
c = 10.306 (1) ÅT = 298 K
α = 97.503 (2)°0.40 × 0.40 × 0.30 mm
β = 99.711 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3179 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2645 reflections with I > 2σ(I)
Tmin = 0.353, Tmax = 0.451Rint = 0.017
6560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03364 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.14Δρmax = 0.30 e Å3
3179 reflectionsΔρmin = 0.50 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.42599 (4)0.24082 (3)0.12584 (3)0.06775 (14)
S0.32177 (9)0.58854 (7)0.45871 (6)0.04988 (17)
O10.3033 (2)0.46045 (17)0.07725 (15)0.0442 (4)
O20.7594 (3)0.8276 (2)0.2120 (2)0.0686 (6)
O30.5174 (3)0.8291 (2)0.2711 (2)0.0721 (6)
O40.2197 (3)0.4784 (2)0.52321 (18)0.0618 (5)
C10.2665 (3)0.5195 (2)0.2849 (2)0.0413 (5)
C20.0997 (3)0.4347 (2)0.2012 (2)0.0401 (5)
C30.0682 (3)0.3882 (3)0.2186 (2)0.0447 (5)
H30.09410.41080.30100.054*
C40.1944 (3)0.3070 (3)0.1078 (3)0.0472 (6)
C50.1604 (4)0.2716 (3)0.0175 (3)0.0509 (6)
H50.25000.21590.08890.061*
C60.0052 (3)0.3188 (3)0.0354 (2)0.0478 (6)
H60.03070.29660.11810.057*
C70.1318 (3)0.4008 (2)0.0749 (2)0.0414 (5)
C80.3827 (3)0.5320 (2)0.2067 (2)0.0417 (5)
C90.5701 (3)0.6117 (3)0.2310 (3)0.0460 (6)
H9A0.61500.57670.15860.055*
H9B0.62810.59590.31400.055*
C100.6090 (3)0.7675 (3)0.2403 (3)0.0506 (6)
C11A0.8140 (8)0.9810 (14)0.2252 (11)0.087 (3)0.720 (8)
H11A0.81171.02450.31390.104*0.720 (8)
H11B0.73751.00530.15900.104*0.720 (8)
C12A0.9913 (6)1.0302 (6)0.2033 (6)0.0749 (16)0.720 (8)
H12A1.02071.12320.18210.090*0.720 (8)
H12B1.00360.96640.13070.090*0.720 (8)
C13A1.1021 (6)1.0324 (8)0.3331 (7)0.098 (2)0.720 (8)
H13A1.07121.08330.40500.117*0.720 (8)
H13B1.07660.93660.34640.117*0.720 (8)
C14A1.2899 (7)1.0964 (9)0.3450 (10)0.134 (3)0.720 (8)
H14A1.34991.09670.43300.202*0.720 (8)
H14B1.31731.19110.33090.202*0.720 (8)
H14C1.32431.04290.27880.202*0.720 (8)
C11B0.806 (2)0.973 (3)0.183 (2)0.070 (5)0.280 (8)
H11C0.72311.01530.20250.084*0.280 (8)
H11D0.81380.97210.09030.084*0.280 (8)
C12B0.9768 (19)1.049 (2)0.275 (3)0.127 (7)0.280 (8)
H12C0.96141.03610.36450.153*0.280 (8)
H12D1.00031.14750.27460.153*0.280 (8)
C13B1.1377 (19)1.0231 (18)0.2628 (16)0.087 (5)0.280 (8)
H13C1.13200.92700.26220.105*0.280 (8)
H13D1.18841.06010.19150.105*0.280 (8)
C14B1.207 (3)1.117 (2)0.3964 (16)0.124 (6)0.280 (8)
H14D1.33051.15470.41330.186*0.280 (8)
H14E1.17291.06550.46430.186*0.280 (8)
H14F1.16341.19310.39850.186*0.280 (8)
C150.2192 (5)0.7173 (3)0.4576 (3)0.0679 (8)
H15A0.09710.67100.42660.102*
H15B0.26150.77880.39870.102*
H15C0.24420.77100.54680.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04457 (17)0.0686 (2)0.0882 (3)0.01726 (14)0.01642 (15)0.01369 (16)
S0.0507 (4)0.0625 (4)0.0376 (3)0.0229 (3)0.0092 (3)0.0067 (3)
O10.0471 (9)0.0509 (10)0.0400 (9)0.0212 (8)0.0158 (7)0.0093 (7)
O20.0515 (11)0.0466 (11)0.1135 (17)0.0178 (9)0.0256 (11)0.0246 (11)
O30.0637 (13)0.0590 (12)0.1004 (16)0.0315 (11)0.0233 (12)0.0072 (11)
O40.0721 (13)0.0801 (14)0.0466 (10)0.0348 (11)0.0218 (9)0.0265 (9)
C10.0462 (13)0.0449 (13)0.0361 (12)0.0191 (10)0.0103 (10)0.0099 (10)
C20.0474 (13)0.0399 (12)0.0393 (12)0.0203 (10)0.0129 (10)0.0123 (10)
C30.0474 (13)0.0471 (13)0.0471 (14)0.0220 (11)0.0160 (11)0.0146 (11)
C40.0448 (13)0.0421 (13)0.0588 (15)0.0192 (11)0.0119 (11)0.0135 (11)
C50.0537 (15)0.0468 (14)0.0504 (14)0.0221 (12)0.0019 (12)0.0044 (11)
C60.0561 (15)0.0515 (14)0.0400 (13)0.0261 (12)0.0099 (11)0.0061 (11)
C70.0449 (13)0.0420 (12)0.0440 (12)0.0211 (10)0.0134 (10)0.0117 (10)
C80.0462 (13)0.0441 (13)0.0399 (12)0.0209 (10)0.0111 (10)0.0112 (10)
C90.0447 (13)0.0512 (14)0.0480 (14)0.0215 (11)0.0144 (11)0.0132 (11)
C100.0463 (14)0.0517 (15)0.0531 (15)0.0191 (12)0.0068 (11)0.0085 (12)
C11A0.072 (4)0.059 (4)0.137 (7)0.029 (3)0.019 (4)0.032 (5)
C12A0.075 (3)0.044 (2)0.105 (4)0.013 (2)0.022 (3)0.028 (3)
C13A0.072 (3)0.080 (4)0.117 (5)0.002 (3)0.004 (3)0.024 (4)
C14A0.077 (4)0.120 (5)0.175 (7)0.001 (4)0.024 (4)0.018 (5)
C11B0.072 (7)0.040 (8)0.096 (9)0.008 (5)0.016 (6)0.034 (7)
C12B0.110 (8)0.109 (10)0.162 (12)0.054 (8)0.005 (7)0.028 (9)
C13B0.085 (7)0.086 (8)0.089 (8)0.028 (6)0.022 (6)0.012 (6)
C14B0.122 (10)0.135 (10)0.109 (9)0.053 (8)0.012 (7)0.000 (7)
C150.087 (2)0.0654 (19)0.0637 (18)0.0394 (17)0.0291 (16)0.0087 (15)
Geometric parameters (Å, º) top
Br—C41.899 (3)C11A—H11A0.9700
S—O41.491 (2)C11A—H11B0.9700
S—C11.762 (2)C12A—C13A1.489 (2)
S—C151.794 (3)C12A—H12A0.9700
O1—C71.370 (3)C12A—H12B0.9700
O1—C81.376 (3)C13A—C14A1.482 (2)
O2—C101.319 (3)C13A—H13A0.9700
O2—C11A1.471 (14)C13A—H13B0.9700
O2—C11B1.50 (3)C14A—H14A0.9600
O3—C101.199 (3)C14A—H14B0.9600
C1—C81.355 (3)C14A—H14C0.9600
C1—C21.444 (3)C11B—C12B1.481 (2)
C2—C31.391 (3)C11B—H11C0.9700
C2—C71.396 (3)C11B—H11D0.9700
C3—C41.380 (4)C12B—C13B1.483 (2)
C3—H30.9300C12B—H12C0.9700
C4—C51.396 (4)C12B—H12D0.9700
C5—C61.376 (4)C13B—C14B1.481 (2)
C5—H50.9300C13B—H13C0.9700
C6—C71.380 (3)C13B—H13D0.9700
C6—H60.9300C14B—H14D0.9600
C8—C91.486 (3)C14B—H14E0.9600
C9—C101.511 (4)C14B—H14F0.9600
C9—H9A0.9700C15—H15A0.9600
C9—H9B0.9700C15—H15B0.9600
C11A—C12A1.482 (2)C15—H15C0.9600
O4—S—C1106.92 (12)C11A—C12A—H12A110.8
O4—S—C15105.78 (14)C13A—C12A—H12A110.8
C1—S—C1598.46 (13)C11A—C12A—H12B110.8
C7—O1—C8106.62 (17)C13A—C12A—H12B110.8
C10—O2—C11A115.2 (3)H12A—C12A—H12B108.9
C10—O2—C11B120.0 (10)C14A—C13A—C12A115.7 (6)
C11A—O2—C11B16.2 (11)C14A—C13A—H13A108.4
C8—C1—C2107.4 (2)C12A—C13A—H13A108.4
C8—C1—S123.77 (19)C14A—C13A—H13B108.4
C2—C1—S128.70 (18)C12A—C13A—H13B108.4
C3—C2—C7119.5 (2)H13A—C13A—H13B107.4
C3—C2—C1135.8 (2)C13A—C14A—H14A109.5
C7—C2—C1104.6 (2)C13A—C14A—H14B109.5
C4—C3—C2116.8 (2)H14A—C14A—H14B109.5
C4—C3—H3121.6C13A—C14A—H14C109.5
C2—C3—H3121.6H14A—C14A—H14C109.5
C3—C4—C5123.2 (2)H14B—C14A—H14C109.5
C3—C4—Br118.51 (19)O2—C11B—C12B104 (2)
C5—C4—Br118.29 (19)O2—C11B—H11C111.1
C6—C5—C4120.2 (2)C12B—C11B—H11C111.1
C6—C5—H5119.9O2—C11B—H11D111.1
C4—C5—H5119.9C12B—C11B—H11D111.1
C5—C6—C7116.8 (2)H11C—C11B—H11D109.0
C5—C6—H6121.6C11B—C12B—C13B125 (2)
C7—C6—H6121.6C11B—C12B—H12C106.1
O1—C7—C6125.9 (2)C13B—C12B—H12C106.1
O1—C7—C2110.7 (2)C11B—C12B—H12D106.1
C6—C7—C2123.5 (2)C13B—C12B—H12D106.1
C1—C8—O1110.7 (2)H12C—C12B—H12D106.3
C1—C8—C9133.3 (2)C14B—C13B—C12B83.6 (14)
O1—C8—C9115.9 (2)C14B—C13B—H13C114.7
C8—C9—C10112.3 (2)C12B—C13B—H13C114.7
C8—C9—H9A109.1C14B—C13B—H13D114.7
C10—C9—H9A109.1C12B—C13B—H13D114.7
C8—C9—H9B109.1H13C—C13B—H13D111.8
C10—C9—H9B109.1C13B—C14B—H14D109.5
H9A—C9—H9B107.9C13B—C14B—H14E109.5
O3—C10—O2124.3 (3)H14D—C14B—H14E109.5
O3—C10—C9124.9 (3)C13B—C14B—H14F109.5
O2—C10—C9110.8 (2)H14D—C14B—H14F109.5
O2—C11A—C12A107.2 (8)H14E—C14B—H14F109.5
O2—C11A—H11A110.3S—C15—H15A109.5
C12A—C11A—H11A110.3S—C15—H15B109.5
O2—C11A—H11B110.3H15A—C15—H15B109.5
C12A—C11A—H11B110.3S—C15—H15C109.5
H11A—C11A—H11B108.5H15A—C15—H15C109.5
C11A—C12A—C13A104.5 (6)H15B—C15—H15C109.5
O4—S—C1—C8136.3 (2)C2—C1—C8—O10.3 (3)
C15—S—C1—C8114.3 (2)S—C1—C8—O1176.29 (16)
O4—S—C1—C239.5 (2)C2—C1—C8—C9175.7 (2)
C15—S—C1—C269.9 (2)S—C1—C8—C97.8 (4)
C8—C1—C2—C3177.6 (3)C7—O1—C8—C10.3 (2)
S—C1—C2—C36.1 (4)C7—O1—C8—C9177.00 (19)
C8—C1—C2—C70.7 (3)C1—C8—C9—C1073.0 (3)
S—C1—C2—C7175.63 (18)O1—C8—C9—C10102.8 (2)
C7—C2—C3—C41.4 (3)C11A—O2—C10—O32.1 (6)
C1—C2—C3—C4179.5 (2)C11B—O2—C10—O315.4 (11)
C2—C3—C4—C50.3 (3)C11A—O2—C10—C9176.9 (5)
C2—C3—C4—Br179.94 (16)C11B—O2—C10—C9165.7 (10)
C3—C4—C5—C60.5 (4)C8—C9—C10—O324.4 (4)
Br—C4—C5—C6179.14 (18)C8—C9—C10—O2156.7 (2)
C4—C5—C6—C70.1 (4)C10—O2—C11A—C12A174.3 (5)
C8—O1—C7—C6179.6 (2)C11B—O2—C11A—C12A74 (4)
C8—O1—C7—C20.8 (2)O2—C11A—C12A—C13A78.9 (8)
C5—C6—C7—O1178.5 (2)C11A—C12A—C13A—C14A172.1 (9)
C5—C6—C7—C21.1 (4)C10—O2—C11B—C12B128.1 (15)
C3—C2—C7—O1177.69 (19)C11A—O2—C11B—C12B51 (3)
C1—C2—C7—O10.9 (2)O2—C11B—C12B—C13B69 (3)
C3—C2—C7—C61.9 (3)C11B—C12B—C13B—C14B171 (3)
C1—C2—C7—C6179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12A···Cgi0.972.783.698 (5)158
C5—H5···O3ii0.932.553.405 (3)153
C9—H9B···O4iii0.972.303.248 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17BrO4S
Mr373.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.420 (1), 10.255 (1), 10.306 (1)
α, β, γ (°)97.503 (2), 99.711 (2), 108.678 (2)
V3)814.55 (15)
Z2
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.353, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
6560, 3179, 2645
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.14
No. of reflections3179
No. of parameters229
No. of restraints64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12A···Cgi0.972.783.698 (5)158
C5—H5···O3ii0.932.553.405 (3)153
C9—H9B···O4iii0.972.303.248 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds