organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-[2-(Di­methyl­amino)eth­yl]-9-(4-meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

aDepartment of Physics, Dhanalakshmi College of Engineering, Tambaram, Chennai 601 301, India, bDepartment of Physics, Anna University, Chennai 600 025, India, cNational Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai 600 113, India, and dSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600, Bangi Selangor, Malaysia
*Correspondence e-mail: ksivakumar@annauniv.edu

(Received 23 December 2008; accepted 24 December 2008; online 10 January 2009)

In the title compound, C28H38N2O3, the central ring of the acridinedione system adopts a boat conformation, while one of the outer rings adopts a half-chair conformation and the conformation of the other outer ring is between a sofa and a half-chair. The acridinedione system is buckled, with an angle of 22.01 (3)°. The crystal packing comprises layers of mol­ecules laid parallel to the ac plane, being reinforced by an intermolecular C—H⋯O interaction.

Related literature

For related literature, see: Josephrajan et al. (2005[Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124-136.]); Murugan et al. (1998[Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.]); Srividya et al. (1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.], 1998[Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245-253.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H38N2O3

  • Mr = 450.60

  • Monoclinic, P 21 /n

  • a = 10.3030 (13) Å

  • b = 19.299 (3) Å

  • c = 13.3961 (18) Å

  • β = 103.336 (4)°

  • V = 2591.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.56 × 0.16 × 0.10 mm

Data collection
  • Bruker KappaAPEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.95, Tmax = 0.99

  • 17538 measured reflections

  • 5944 independent reflections

  • 3567 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.162

  • S = 1.01

  • 5944 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.97 2.51 3.368 (2) 147
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the precise description of a 4-methoxyphenyl substituted tetramethyl acridinedione, (I).

The planar phenyl ring of the substituent moiety at C9 is perpendicular to the acridinedione moiety forming a dihedral angle of 88.21 (6)°, Fig. 1. The dimethylaminoethyl group is also oriented 80.0 (1)° to the acridinedione plane. The substitutuents at the C9 and N1 positions are cis oriented with respect to the acridinedione moiety and project opposite to the fold in the acridinedione moiety. The central ring of the acridinedione moiety adopts a boat conformation (ΔCs (N1) = 0.028 (1)° & ΔCs (C6—C1) = 0.057 (1)°). One of the outer rings (C1—C6) adopts a half-chair conformation (ΔC2 (C1—C6) = 0.045 (1)°) and that of the other outer ring (C10—C15) ring is between a sofa and half chair conformation (ΔCs (C10) = 0.066 (1)° & ΔC2 (C10—C15) = 0.061 (1)°) (Nardelli, 1983). The crystal packing consists of layers of molecules laid parallel to the ac-plane. Only one of the two keto-O atoms participates in a C—H···O contact, Table 1.

Related literature top

For related literature, see: Josephrajan et al. (2005); Murugan et al. (1998); Srividya et al. (1996, 1998).

For related literature, see: Nardelli (1983).

Experimental top

Light-yellow crystals were obtained by recrystallization from an ethanol solution of (I).

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C – H distances in the range 0.93 – 0.98 Å, and with Uiso(H) = 1.2 or 1.5 (for methyl-H) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
10-[2-(Dimethylamino)ethyl]-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl- 3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C28H38N2O3F(000) = 976
Mr = 450.60Dx = 1.155 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2202 reflections
a = 10.3030 (13) Åθ = 1.9–27.5°
b = 19.299 (3) ŵ = 0.07 mm1
c = 13.3961 (18) ÅT = 295 K
β = 103.336 (4)°Slab, light yellow
V = 2591.8 (6) Å30.56 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
5944 independent reflections
Radiation source: fine-focus sealed tube3567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 913
Tmin = 0.95, Tmax = 0.99k = 2325
17538 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3097P]
where P = (Fo2 + 2Fc2)/3
5944 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C28H38N2O3V = 2591.8 (6) Å3
Mr = 450.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3030 (13) ŵ = 0.07 mm1
b = 19.299 (3) ÅT = 295 K
c = 13.3961 (18) Å0.56 × 0.16 × 0.10 mm
β = 103.336 (4)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
5944 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3567 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.99Rint = 0.041
17538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
5944 reflectionsΔρmin = 0.16 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88988 (15)0.24189 (8)0.17052 (12)0.0631 (5)
O20.50984 (16)0.38481 (8)0.19363 (11)0.0601 (4)
O30.32638 (16)0.06075 (9)0.00092 (12)0.0715 (5)
N10.69322 (16)0.22382 (8)0.45422 (12)0.0417 (4)
N20.5859 (2)0.10112 (10)0.63649 (14)0.0637 (5)
C10.78666 (19)0.20226 (10)0.39984 (15)0.0410 (5)
C20.8942 (2)0.15337 (11)0.45263 (16)0.0528 (6)
H2A0.85340.11550.48190.063*
H2B0.95300.17770.50870.063*
C30.9777 (2)0.12330 (13)0.38223 (18)0.0655 (7)
C41.0128 (2)0.18105 (14)0.31611 (18)0.0680 (7)
H4A1.07040.21410.35970.082*
H4B1.06210.16170.26910.082*
C50.8921 (2)0.21803 (11)0.25587 (17)0.0486 (5)
C60.78033 (19)0.22640 (10)0.30388 (14)0.0404 (5)
C71.1063 (3)0.0932 (2)0.4501 (2)0.1156 (13)
H7A1.16040.07390.40750.173*
H7B1.08400.05760.49330.173*
H7C1.15490.12940.49200.173*
C80.8996 (3)0.06640 (14)0.3143 (2)0.0950 (10)
H8A0.95270.04810.27020.143*
H8B0.81860.08540.27340.143*
H8C0.87860.02990.35670.143*
C90.65777 (19)0.26291 (9)0.24426 (14)0.0394 (5)
H90.68590.29670.19880.047*
C100.59692 (19)0.30198 (10)0.31887 (14)0.0384 (4)
C110.5246 (2)0.36554 (10)0.28247 (15)0.0436 (5)
C120.4725 (2)0.40739 (11)0.35877 (16)0.0549 (6)
H12A0.39880.43580.32270.066*
H12B0.54220.43820.39460.066*
C130.4252 (2)0.36234 (11)0.43689 (16)0.0506 (5)
C140.5418 (2)0.31647 (10)0.48961 (15)0.0470 (5)
H14A0.60680.34490.53590.056*
H14B0.50930.28200.53060.056*
C150.61041 (19)0.27989 (9)0.41677 (14)0.0389 (4)
C160.3845 (3)0.40841 (12)0.51759 (19)0.0737 (8)
H16A0.35420.37990.56640.111*
H16B0.31400.43890.48470.111*
H16C0.45990.43530.55240.111*
C170.3062 (2)0.31810 (13)0.3845 (2)0.0692 (7)
H17A0.33130.28890.33410.104*
H17B0.23400.34770.35160.104*
H17C0.27830.28990.43470.104*
C180.6893 (2)0.19211 (11)0.55353 (15)0.0484 (5)
H18A0.67700.22800.60110.058*
H18B0.77370.16930.58180.058*
C190.5771 (2)0.13980 (12)0.54196 (17)0.0599 (6)
H19A0.49210.16370.52390.072*
H19B0.58150.10790.48690.072*
C200.4552 (3)0.08163 (17)0.6512 (2)0.1008 (11)
H20A0.46540.05650.71440.151*
H20B0.41080.05290.59520.151*
H20C0.40320.12260.65370.151*
C210.6703 (3)0.04104 (14)0.6416 (2)0.0922 (9)
H21A0.67590.01750.70560.138*
H21B0.75790.05530.63660.138*
H21C0.63340.01030.58590.138*
C220.56405 (19)0.21121 (9)0.17768 (14)0.0389 (4)
C230.5755 (2)0.19818 (11)0.07903 (15)0.0497 (5)
H230.63750.22320.05310.060*
C240.4982 (2)0.14919 (11)0.01715 (16)0.0544 (6)
H240.50800.14200.04940.065*
C250.4071 (2)0.11125 (11)0.05418 (16)0.0495 (5)
C260.3929 (2)0.12379 (12)0.15253 (17)0.0595 (6)
H260.33060.09880.17820.071*
C270.4700 (2)0.17284 (11)0.21265 (16)0.0529 (6)
H270.45890.18050.27870.063*
C280.3427 (3)0.04469 (14)0.09916 (19)0.0768 (8)
H28A0.28120.00880.12860.115*
H28B0.43230.02910.09490.115*
H28C0.32560.08530.14150.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0671 (11)0.0764 (11)0.0546 (10)0.0024 (8)0.0320 (8)0.0013 (8)
O20.0815 (12)0.0558 (9)0.0444 (9)0.0103 (8)0.0171 (8)0.0126 (7)
O30.0749 (11)0.0787 (12)0.0624 (11)0.0261 (9)0.0192 (9)0.0271 (9)
N10.0492 (10)0.0449 (9)0.0323 (8)0.0027 (8)0.0120 (8)0.0030 (7)
N20.0791 (14)0.0595 (12)0.0561 (12)0.0048 (10)0.0231 (11)0.0131 (10)
C10.0421 (11)0.0415 (11)0.0379 (11)0.0038 (8)0.0065 (9)0.0051 (9)
C20.0551 (14)0.0569 (13)0.0424 (12)0.0084 (11)0.0031 (10)0.0024 (10)
C30.0672 (16)0.0759 (17)0.0521 (14)0.0281 (13)0.0111 (12)0.0006 (13)
C40.0499 (14)0.097 (2)0.0589 (15)0.0114 (13)0.0163 (12)0.0108 (14)
C50.0497 (13)0.0510 (13)0.0477 (13)0.0080 (10)0.0167 (10)0.0124 (10)
C60.0443 (11)0.0391 (11)0.0388 (11)0.0044 (8)0.0115 (9)0.0060 (8)
C70.099 (2)0.165 (3)0.084 (2)0.078 (2)0.0213 (19)0.014 (2)
C80.152 (3)0.0593 (17)0.0743 (19)0.0223 (18)0.027 (2)0.0124 (15)
C90.0482 (12)0.0392 (10)0.0335 (10)0.0023 (9)0.0147 (9)0.0032 (8)
C100.0462 (11)0.0364 (10)0.0339 (10)0.0032 (8)0.0117 (9)0.0009 (8)
C110.0496 (12)0.0409 (11)0.0407 (11)0.0041 (9)0.0115 (10)0.0018 (9)
C120.0716 (15)0.0449 (12)0.0517 (13)0.0103 (11)0.0212 (12)0.0036 (10)
C130.0637 (14)0.0461 (12)0.0474 (12)0.0084 (10)0.0238 (11)0.0018 (10)
C140.0610 (14)0.0462 (12)0.0366 (11)0.0033 (10)0.0172 (10)0.0052 (9)
C150.0426 (11)0.0368 (11)0.0381 (11)0.0044 (8)0.0110 (9)0.0015 (8)
C160.105 (2)0.0610 (15)0.0668 (17)0.0224 (14)0.0435 (16)0.0001 (13)
C170.0590 (16)0.0802 (18)0.0734 (17)0.0012 (13)0.0257 (13)0.0027 (14)
C180.0582 (13)0.0523 (13)0.0350 (11)0.0042 (10)0.0116 (10)0.0080 (9)
C190.0642 (15)0.0624 (15)0.0540 (14)0.0022 (12)0.0153 (12)0.0129 (11)
C200.109 (2)0.103 (2)0.111 (3)0.0014 (19)0.066 (2)0.021 (2)
C210.094 (2)0.077 (2)0.102 (2)0.0129 (17)0.0145 (18)0.0305 (17)
C220.0430 (11)0.0408 (11)0.0327 (10)0.0047 (8)0.0081 (9)0.0014 (8)
C230.0547 (13)0.0582 (13)0.0395 (12)0.0091 (10)0.0175 (10)0.0032 (10)
C240.0597 (14)0.0679 (15)0.0378 (12)0.0049 (12)0.0156 (11)0.0132 (11)
C250.0496 (13)0.0505 (12)0.0465 (12)0.0045 (10)0.0073 (10)0.0083 (10)
C260.0674 (16)0.0640 (15)0.0511 (13)0.0199 (12)0.0221 (12)0.0038 (11)
C270.0676 (15)0.0588 (14)0.0356 (11)0.0114 (11)0.0189 (11)0.0028 (10)
C280.0816 (19)0.0837 (19)0.0629 (16)0.0160 (15)0.0124 (14)0.0311 (14)
Geometric parameters (Å, º) top
O1—C51.228 (2)C12—H12B0.9700
O2—C111.222 (2)C13—C171.526 (3)
O3—C251.370 (2)C13—C141.528 (3)
O3—C281.423 (3)C13—C161.531 (3)
N1—C151.398 (2)C14—C151.506 (2)
N1—C11.398 (2)C14—H14A0.9700
N1—C181.473 (2)C14—H14B0.9700
N2—C211.442 (3)C16—H16A0.9600
N2—C201.454 (3)C16—H16B0.9600
N2—C191.455 (3)C16—H16C0.9600
C1—C61.355 (3)C17—H17A0.9600
C1—C21.502 (3)C17—H17B0.9600
C2—C31.529 (3)C17—H17C0.9600
C2—H2A0.9700C18—C191.515 (3)
C2—H2B0.9700C18—H18A0.9700
C3—C41.518 (3)C18—H18B0.9700
C3—C81.531 (4)C19—H19A0.9700
C3—C71.538 (3)C19—H19B0.9700
C4—C51.498 (3)C20—H20A0.9600
C4—H4A0.9700C20—H20B0.9600
C4—H4B0.9700C20—H20C0.9600
C5—C61.452 (3)C21—H21A0.9600
C6—C91.505 (3)C21—H21B0.9600
C7—H7A0.9600C21—H21C0.9600
C7—H7B0.9600C22—C231.377 (2)
C7—H7C0.9600C22—C271.384 (3)
C8—H8A0.9600C23—C241.382 (3)
C8—H8B0.9600C23—H230.9300
C8—H8C0.9600C24—C251.370 (3)
C9—C101.500 (2)C24—H240.9300
C9—C221.525 (3)C25—C261.380 (3)
C9—H90.9800C26—C271.372 (3)
C10—C151.355 (2)C26—H260.9300
C10—C111.459 (3)C27—H270.9300
C11—C121.496 (3)C28—H28A0.9600
C12—C131.524 (3)C28—H28B0.9600
C12—H12A0.9700C28—H28C0.9600
C25—O3—C28117.13 (18)C15—C14—C13114.11 (16)
C15—N1—C1118.69 (15)C15—C14—H14A108.7
C15—N1—C18120.27 (15)C13—C14—H14A108.7
C1—N1—C18120.84 (16)C15—C14—H14B108.7
C21—N2—C20110.7 (2)C13—C14—H14B108.7
C21—N2—C19111.7 (2)H14A—C14—H14B107.6
C20—N2—C19112.2 (2)C10—C15—N1120.58 (16)
C6—C1—N1120.26 (18)C10—C15—C14121.39 (17)
C6—C1—C2122.10 (17)N1—C15—C14117.98 (16)
N1—C1—C2117.62 (16)C13—C16—H16A109.5
C1—C2—C3114.00 (17)C13—C16—H16B109.5
C1—C2—H2A108.8H16A—C16—H16B109.5
C3—C2—H2A108.8C13—C16—H16C109.5
C1—C2—H2B108.8H16A—C16—H16C109.5
C3—C2—H2B108.8H16B—C16—H16C109.5
H2A—C2—H2B107.6C13—C17—H17A109.5
C4—C3—C2108.96 (19)C13—C17—H17B109.5
C4—C3—C8110.1 (2)H17A—C17—H17B109.5
C2—C3—C8110.2 (2)C13—C17—H17C109.5
C4—C3—C7109.5 (2)H17A—C17—H17C109.5
C2—C3—C7107.98 (19)H17B—C17—H17C109.5
C8—C3—C7110.1 (2)N1—C18—C19111.32 (17)
C5—C4—C3112.6 (2)N1—C18—H18A109.4
C5—C4—H4A109.1C19—C18—H18A109.4
C3—C4—H4A109.1N1—C18—H18B109.4
C5—C4—H4B109.1C19—C18—H18B109.4
C3—C4—H4B109.1H18A—C18—H18B108.0
H4A—C4—H4B107.8N2—C19—C18111.11 (18)
O1—C5—C6121.6 (2)N2—C19—H19A109.4
O1—C5—C4121.02 (19)C18—C19—H19A109.4
C6—C5—C4117.34 (19)N2—C19—H19B109.4
C1—C6—C5120.83 (19)C18—C19—H19B109.4
C1—C6—C9121.04 (17)H19A—C19—H19B108.0
C5—C6—C9118.13 (17)N2—C20—H20A109.5
C3—C7—H7A109.5N2—C20—H20B109.5
C3—C7—H7B109.5H20A—C20—H20B109.5
H7A—C7—H7B109.5N2—C20—H20C109.5
C3—C7—H7C109.5H20A—C20—H20C109.5
H7A—C7—H7C109.5H20B—C20—H20C109.5
H7B—C7—H7C109.5N2—C21—H21A109.5
C3—C8—H8A109.5N2—C21—H21B109.5
C3—C8—H8B109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5N2—C21—H21C109.5
C3—C8—H8C109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5C23—C22—C27116.67 (18)
C10—C9—C6108.08 (15)C23—C22—C9119.86 (17)
C10—C9—C22114.40 (15)C27—C22—C9123.38 (16)
C6—C9—C22110.16 (15)C22—C23—C24122.36 (19)
C10—C9—H9108.0C22—C23—H23118.8
C6—C9—H9108.0C24—C23—H23118.8
C22—C9—H9108.0C25—C24—C23119.76 (19)
C15—C10—C11121.21 (17)C25—C24—H24120.1
C15—C10—C9121.43 (17)C23—C24—H24120.1
C11—C10—C9117.35 (16)O3—C25—C24125.15 (19)
O2—C11—C10121.36 (17)O3—C25—C26115.88 (19)
O2—C11—C12121.14 (18)C24—C25—C26119.0 (2)
C10—C11—C12117.48 (17)C27—C26—C25120.4 (2)
C11—C12—C13112.51 (17)C27—C26—H26119.8
C11—C12—H12A109.1C25—C26—H26119.8
C13—C12—H12A109.1C26—C27—C22121.77 (19)
C11—C12—H12B109.1C26—C27—H27119.1
C13—C12—H12B109.1C22—C27—H27119.1
H12A—C12—H12B107.8O3—C28—H28A109.5
C12—C13—C17110.69 (19)O3—C28—H28B109.5
C12—C13—C14107.84 (17)H28A—C28—H28B109.5
C17—C13—C14110.58 (18)O3—C28—H28C109.5
C12—C13—C16109.66 (17)H28A—C28—H28C109.5
C17—C13—C16109.12 (19)H28B—C28—H28C109.5
C14—C13—C16108.92 (18)
C15—N1—C1—C612.1 (3)C11—C12—C13—C1456.7 (2)
C18—N1—C1—C6172.94 (18)C11—C12—C13—C16175.2 (2)
C15—N1—C1—C2166.47 (18)C12—C13—C14—C1548.6 (2)
C18—N1—C1—C28.4 (3)C17—C13—C14—C1572.5 (2)
C6—C1—C2—C310.9 (3)C16—C13—C14—C15167.55 (18)
N1—C1—C2—C3170.49 (18)C11—C10—C15—N1172.16 (17)
C1—C2—C3—C444.3 (3)C9—C10—C15—N16.7 (3)
C1—C2—C3—C876.6 (3)C11—C10—C15—C145.2 (3)
C1—C2—C3—C7163.1 (2)C9—C10—C15—C14175.93 (17)
C2—C3—C4—C556.0 (3)C1—N1—C15—C1016.1 (3)
C8—C3—C4—C564.9 (3)C18—N1—C15—C10168.99 (18)
C7—C3—C4—C5173.9 (2)C1—N1—C15—C14161.44 (16)
C3—C4—C5—O1147.1 (2)C18—N1—C15—C1413.5 (3)
C3—C4—C5—C634.8 (3)C13—C14—C15—C1019.1 (3)
N1—C1—C6—C5165.40 (17)C13—C14—C15—N1163.47 (17)
C2—C1—C6—C513.2 (3)C15—N1—C18—C1983.4 (2)
N1—C1—C6—C914.3 (3)C1—N1—C18—C19101.7 (2)
C2—C1—C6—C9167.16 (17)C21—N2—C19—C1887.4 (2)
O1—C5—C6—C1177.22 (19)C20—N2—C19—C18147.7 (2)
C4—C5—C6—C10.8 (3)N1—C18—C19—N2171.31 (17)
O1—C5—C6—C92.5 (3)C10—C9—C22—C23147.68 (18)
C4—C5—C6—C9179.53 (18)C6—C9—C22—C2390.4 (2)
C1—C6—C9—C1033.0 (2)C10—C9—C22—C2735.8 (3)
C5—C6—C9—C10146.74 (17)C6—C9—C22—C2786.2 (2)
C1—C6—C9—C2292.7 (2)C27—C22—C23—C240.3 (3)
C5—C6—C9—C2287.62 (19)C9—C22—C23—C24176.46 (19)
C6—C9—C10—C1529.1 (2)C22—C23—C24—C250.6 (3)
C22—C9—C10—C1594.0 (2)C28—O3—C25—C242.7 (3)
C6—C9—C10—C11149.79 (16)C28—O3—C25—C26177.5 (2)
C22—C9—C10—C1187.1 (2)C23—C24—C25—O3179.0 (2)
C15—C10—C11—O2178.41 (19)C23—C24—C25—C261.2 (3)
C9—C10—C11—O22.7 (3)O3—C25—C26—C27179.3 (2)
C15—C10—C11—C123.3 (3)C24—C25—C26—C270.8 (4)
C9—C10—C11—C12175.59 (17)C25—C26—C27—C220.1 (4)
O2—C11—C12—C13146.1 (2)C23—C22—C27—C260.6 (3)
C10—C11—C12—C1335.6 (3)C9—C22—C27—C26176.0 (2)
C11—C12—C13—C1764.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.513.368 (2)147
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H38N2O3
Mr450.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.3030 (13), 19.299 (3), 13.3961 (18)
β (°) 103.336 (4)
V3)2591.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.56 × 0.16 × 0.10
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.95, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
17538, 5944, 3567
Rint0.041
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.162, 1.01
No. of reflections5944
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.513.368 (2)147
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor P. Ramamurthy, National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai 600 113, India, for his help during the preparation of the sample.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJosephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124–136.  Google Scholar
First citationMurugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.  Web of Science CSD CrossRef Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.  Web of Science CrossRef Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds