organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Nitro-1,2,3,4-tetra­hydro­naphthalene-1-spiro-2′-(1,3-di­thiane)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 December 2008; accepted 13 January 2009; online 17 January 2009)

In the title compound, C13H15NO2S2, the nitro group is coplanar with the benzene ring to which it is attached, forming a dihedral angle of 1.07 (14)°. The dithiane ring adopts a chair conformation. In the crystal structure, mol­ecules are linked through C—H⋯O and C—H⋯π [C⋯Cg = 3.7164 (15) Å] inter­actions. The crystal studied was an inversion twin with an 0.134 (5):0.866 (5) domain ratio.

Related literature

For the calculation of ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related literature including applications, see: Goswami & Maity (2008[Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.]); Fun et al. (2009[Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO2S2

  • Mr = 281.38

  • Orthorhombic, F d d 2

  • a = 12.8673 (1) Å

  • b = 42.2330 (6) Å

  • c = 9.1819 (1) Å

  • V = 4989.67 (10) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.30 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.977

  • 54206 measured reflections

  • 6726 independent reflections

  • 5979 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.077

  • S = 1.06

  • 6726 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3202 Friedel pairs

  • Flack parameter: 0.13 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.97 2.58 3.4565 (18) 151
C7—H7ACg1ii 0.93 2.82 3.7164 (15) 162
Symmetry codes: (i) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 4}}, y+{\script{3\over 4}}, z+{\script{1\over 4}}]. Cg1 is the centroid of the C5–C10 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The protection of carbonyl groups to produce dithioketals is now commonly used as an important synthetic technique in the preparation of many organic compounds, including multi-functional complex molecules (Goswami & Maity 2008; Fun et al., 2009). Herein, we report the synthesis of the title compound, (I), from 5-nitro-3,4-dihydro-2H-naphthalen-1-one using boron trifluoride etherate as the catalyst.

In (I), Fig. 1, the nitro group is co-planar with the benzene ring, forming a dihedral angle of 1.07 (14)°. The thiacyclohexane ring adopts a chair conformation with ring puckering parameters of Q = 0.7198 (11) Å, Θ = 8.49 (10)°, and Φ = 79.6 (6)° (Cremer & Pople, 1975). The crystal structure is stabilized by intermolecular C—H···π interactions (Cg1 is the centroid of the C5–C10 benzene ring), see Table 1. Further, neighbouring molecules are linked through C—H···O interactions along the c axis, Fig. 2.

Related literature top

For the calculation of ring puckering parameters, see: Cremer & Pople (1975). For related literature including applications, see: Goswami & Maity (2008); Fun et al. (2009). Cg1 is the centroid of the C5–C10 benzene ring.

Experimental top

A stirred dichloromethane (50 mL) solution of 5-nitro-3,4-dihydro-2H-naphthalen-1-one (500 mg, 2.61 mmol) and boron trifluoride etherate (0.5 mL) in was cooled to 273 K. To this 1,3-propanedithiol (450 mg, 4.1 mmol) was added dropwise over 15 min. The mixture was stirred at room temperature for 3 h and the progress of the reaction was monitored by TLC. After completion of the reaction, NaHCO3 solution was added carefully to neutralize the mixture at room temperature. This was then extracted with dichloromethane. The organic layer was dried (anhydrous Na2SO4) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10 % ethyl acetate in petroleum ether as eluant to afford (I) (670 mg, 92 %) as a colourless crystalline solid along with other thiane derivatives.

Refinement top

All hydrogen atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2 Ueq(C). The structure was twinned with a refined BASF ratio of 0.134 (5):0.866 (5).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a-axis showing the linking of molecules through intermolecular C—H···O interactions (dashed lines) along the c-axis.
7-Nitro-1,2,3,4-tetrahydronaphthalene-1-spiro-2'-(1,3-dithiane) top
Crystal data top
C13H15NO2S2F(000) = 2368
Mr = 281.38Dx = 1.498 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9946 reflections
a = 12.8673 (1) Åθ = 2.8–35.0°
b = 42.2330 (6) ŵ = 0.42 mm1
c = 9.1819 (1) ÅT = 100 K
V = 4989.67 (10) Å3Plate, colourless
Z = 160.41 × 0.30 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6726 independent reflections
Radiation source: fine-focus sealed tube5979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 37.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.849, Tmax = 0.977k = 7272
54206 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0258P)2 + 6.6616P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6726 reflectionsΔρmax = 0.42 e Å3
164 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 3202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (5)
Crystal data top
C13H15NO2S2V = 4989.67 (10) Å3
Mr = 281.38Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 12.8673 (1) ŵ = 0.42 mm1
b = 42.2330 (6) ÅT = 100 K
c = 9.1819 (1) Å0.41 × 0.30 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5979 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.977Rint = 0.067
54206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.23 e Å3
6726 reflectionsAbsolute structure: Flack (1983), 3202 Friedel pairs
164 parametersAbsolute structure parameter: 0.13 (5)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10407 (2)0.241432 (7)0.34587 (3)0.01374 (6)
S20.04426 (2)0.186537 (7)0.31249 (4)0.01436 (6)
O10.08674 (9)0.16135 (3)0.79752 (12)0.0220 (2)
O20.22833 (9)0.13439 (3)0.82907 (13)0.0258 (2)
N10.16994 (9)0.15045 (3)0.75344 (12)0.0163 (2)
C10.08854 (9)0.20066 (3)0.27797 (13)0.01231 (19)
C20.11450 (10)0.19792 (3)0.11508 (14)0.0159 (2)
H2A0.09110.17750.07910.019*
H2B0.07760.21430.06180.019*
C30.23059 (10)0.20125 (3)0.08744 (15)0.0167 (2)
H3A0.25520.22120.12690.020*
H3B0.24400.20110.01650.020*
C40.28806 (11)0.17388 (3)0.15959 (15)0.0167 (2)
H4A0.27450.15460.10550.020*
H4B0.36220.17790.15560.020*
C50.25624 (9)0.16909 (3)0.31606 (15)0.0139 (2)
C60.32137 (11)0.15154 (3)0.40812 (16)0.0173 (2)
H6A0.38400.14390.37190.021*
C70.29507 (11)0.14526 (3)0.55123 (16)0.0169 (2)
H7A0.33880.13350.61120.020*
C80.20103 (10)0.15708 (3)0.60257 (14)0.0140 (2)
C90.13528 (10)0.17506 (3)0.51660 (14)0.0132 (2)
H9A0.07390.18310.55500.016*
C100.16192 (10)0.18097 (3)0.37155 (13)0.0127 (2)
C110.11830 (10)0.21555 (3)0.20993 (15)0.0160 (2)
H11A0.09730.21450.10860.019*
H11B0.19130.21000.21470.019*
C120.10538 (11)0.24943 (3)0.26325 (16)0.0176 (2)
H12A0.12380.25030.36560.021*
H12B0.15350.26290.21070.021*
C130.00429 (10)0.26252 (3)0.24439 (15)0.0164 (2)
H13A0.00460.28450.27470.020*
H13B0.02200.26190.14180.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01297 (12)0.01371 (11)0.01454 (13)0.00002 (10)0.00051 (10)0.00104 (10)
S20.01150 (11)0.01563 (11)0.01593 (13)0.00058 (10)0.00027 (10)0.00191 (10)
O10.0251 (5)0.0258 (5)0.0152 (4)0.0057 (4)0.0027 (4)0.0002 (4)
O20.0277 (5)0.0308 (5)0.0188 (5)0.0073 (4)0.0041 (4)0.0086 (4)
N10.0198 (5)0.0157 (4)0.0135 (5)0.0000 (4)0.0024 (4)0.0006 (4)
C10.0110 (5)0.0143 (4)0.0117 (5)0.0003 (4)0.0009 (4)0.0003 (4)
C20.0159 (5)0.0197 (5)0.0121 (5)0.0014 (4)0.0012 (4)0.0010 (4)
C30.0171 (5)0.0185 (5)0.0146 (5)0.0009 (4)0.0045 (4)0.0010 (4)
C40.0154 (5)0.0187 (5)0.0159 (5)0.0023 (4)0.0047 (4)0.0002 (4)
C50.0123 (5)0.0135 (4)0.0158 (5)0.0003 (4)0.0018 (4)0.0002 (4)
C60.0141 (5)0.0172 (5)0.0205 (6)0.0031 (4)0.0015 (5)0.0006 (5)
C70.0153 (5)0.0156 (5)0.0197 (6)0.0020 (4)0.0024 (4)0.0013 (4)
C80.0158 (5)0.0137 (4)0.0124 (5)0.0012 (4)0.0010 (4)0.0003 (4)
C90.0123 (5)0.0146 (5)0.0128 (5)0.0001 (4)0.0003 (4)0.0006 (4)
C100.0116 (5)0.0135 (4)0.0129 (5)0.0009 (4)0.0002 (4)0.0002 (4)
C110.0129 (5)0.0179 (5)0.0173 (6)0.0011 (4)0.0022 (4)0.0010 (4)
C120.0158 (6)0.0164 (5)0.0207 (6)0.0033 (4)0.0006 (5)0.0002 (4)
C130.0152 (5)0.0152 (5)0.0187 (6)0.0019 (4)0.0006 (4)0.0013 (4)
Geometric parameters (Å, º) top
S1—C131.8192 (13)C5—C61.4022 (18)
S1—C11.8421 (12)C5—C101.4086 (17)
S2—C111.8153 (13)C6—C71.383 (2)
S2—C11.8375 (12)C6—H6A0.9300
O1—N11.2337 (16)C7—C81.3915 (18)
O2—N11.2276 (15)C7—H7A0.9300
N1—C81.4688 (17)C8—C91.3840 (17)
C1—C101.5236 (17)C9—C101.3977 (17)
C1—C21.5369 (17)C9—H9A0.9300
C2—C31.5217 (18)C11—C121.5216 (19)
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C3—C41.5237 (18)C12—C131.5254 (19)
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C4—C51.5075 (19)C13—H13A0.9700
C4—H4A0.9700C13—H13B0.9700
C4—H4B0.9700
C13—S1—C1101.98 (6)C7—C6—H6A119.1
C11—S2—C1100.34 (6)C5—C6—H6A119.1
O2—N1—O1123.49 (12)C6—C7—C8117.77 (12)
O2—N1—C8118.18 (11)C6—C7—H7A121.1
O1—N1—C8118.33 (11)C8—C7—H7A121.1
C10—C1—C2111.90 (10)C9—C8—C7122.36 (12)
C10—C1—S2107.56 (8)C9—C8—N1118.43 (11)
C2—C1—S2110.21 (9)C7—C8—N1119.20 (11)
C10—C1—S1104.60 (8)C8—C9—C10119.44 (11)
C2—C1—S1112.11 (8)C8—C9—H9A120.3
S2—C1—S1110.24 (6)C10—C9—H9A120.3
C3—C2—C1111.63 (11)C9—C10—C5119.50 (11)
C3—C2—H2A109.3C9—C10—C1118.87 (11)
C1—C2—H2A109.3C5—C10—C1121.62 (11)
C3—C2—H2B109.3C12—C11—S2114.24 (9)
C1—C2—H2B109.3C12—C11—H11A108.7
H2A—C2—H2B108.0S2—C11—H11A108.7
C2—C3—C4109.49 (11)C12—C11—H11B108.7
C2—C3—H3A109.8S2—C11—H11B108.7
C4—C3—H3A109.8H11A—C11—H11B107.6
C2—C3—H3B109.8C11—C12—C13113.91 (11)
C4—C3—H3B109.8C11—C12—H12A108.8
H3A—C3—H3B108.2C13—C12—H12A108.8
C5—C4—C3112.60 (11)C11—C12—H12B108.8
C5—C4—H4A109.1C13—C12—H12B108.8
C3—C4—H4A109.1H12A—C12—H12B107.7
C5—C4—H4B109.1C12—C13—S1114.67 (9)
C3—C4—H4B109.1C12—C13—H13A108.6
H4A—C4—H4B107.8S1—C13—H13A108.6
C6—C5—C10119.02 (12)C12—C13—H13B108.6
C6—C5—C4118.89 (11)S1—C13—H13B108.6
C10—C5—C4122.07 (11)H13A—C13—H13B107.6
C7—C6—C5121.88 (12)
C11—S2—C1—C10173.57 (8)O2—N1—C8—C70.47 (18)
C11—S2—C1—C264.20 (9)O1—N1—C8—C7179.39 (12)
C11—S2—C1—S160.08 (7)C7—C8—C9—C101.89 (18)
C13—S1—C1—C10173.77 (8)N1—C8—C9—C10178.31 (11)
C13—S1—C1—C264.78 (10)C8—C9—C10—C51.31 (17)
C13—S1—C1—S258.40 (8)C8—C9—C10—C1179.70 (11)
C10—C1—C2—C345.80 (14)C6—C5—C10—C90.02 (17)
S2—C1—C2—C3165.44 (8)C4—C5—C10—C9178.31 (11)
S1—C1—C2—C371.36 (12)C6—C5—C10—C1178.98 (11)
C1—C2—C3—C464.05 (14)C4—C5—C10—C12.73 (18)
C2—C3—C4—C549.41 (15)C2—C1—C10—C9165.62 (11)
C3—C4—C5—C6161.70 (12)S2—C1—C10—C944.44 (13)
C3—C4—C5—C1020.01 (17)S1—C1—C10—C972.78 (12)
C10—C5—C6—C70.79 (19)C2—C1—C10—C515.41 (16)
C4—C5—C6—C7177.56 (12)S2—C1—C10—C5136.59 (10)
C5—C6—C7—C80.27 (19)S1—C1—C10—C5106.18 (11)
C6—C7—C8—C91.09 (19)C1—S2—C11—C1261.71 (11)
C6—C7—C8—N1179.11 (11)S2—C11—C12—C1365.29 (14)
O2—N1—C8—C9179.72 (12)C11—C12—C13—S162.18 (14)
O1—N1—C8—C90.42 (17)C1—S1—C13—C1256.76 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.583.4565 (18)151
C7—H7A···Cg1ii0.932.823.7164 (15)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/4, y+3/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC13H15NO2S2
Mr281.38
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)12.8673 (1), 42.2330 (6), 9.1819 (1)
V3)4989.67 (10)
Z16
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.41 × 0.30 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.849, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
54206, 6726, 5979
Rint0.067
(sin θ/λ)max1)0.864
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.077, 1.06
No. of reflections6726
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.23
Absolute structureFlack (1983), 3202 Friedel pairs
Absolute structure parameter0.13 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.583.4565 (18)151
C7—H7A···Cg1ii0.932.823.7164 (15)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/4, y+3/4, z+1/4.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds