organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tri­butyl­ammonium 4-hy­droxy­naphthalene-2-sulfonate

aDepartment of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
*Correspondence e-mail: mizu-j@ynu.ac.jp

(Received 31 December 2008; accepted 4 January 2009; online 17 January 2009)

The title compound, C19H34N+·C10H7O4S, is a charge-control agent used for toners in electrophotography. In the crystal structure, centrosymmetric anions associate through O—H⋯O hydrogen bonds formed between the O—H group of one anion and the sulfonate O atom of a neighbor. The components of the dimer are offset with respect to each other so that the separation between the two parallel naphthalene skeletons is about 1.6 Å. The ethyl residues of two of the butyl groups are disordered and were modelled over two postions (site occupancies = 0.33/0.67 and 0.34/0.66).

Related literature

For the function of charge-control agents, see: Nash et al. (2001[Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358-364.]). For the structures of benzyl­tributyl­ammonium 4-hydroxy­naphthalene-1-sulfonate and benzyl­tributyl­ammonium 6-hydroxy­naphthalene-2-sulfonate, see: Mizuguchi et al. (2007[Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509-o2510.]) and Uta et al. (2009[Uta, K., Sato, Y. & Mizuguchi, J. (2009). Acta Cryst. E65, o319.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C19H34N+·C10H7O4S

  • Mr = 499.70

  • Monoclinic, P 21 /n

  • a = 11.2676 (11) Å

  • b = 12.4528 (12) Å

  • c = 20.549 (2) Å

  • β = 101.628 (7)°

  • V = 2824.1 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.27 mm−1

  • T = 296.1 K

  • 0.50 × 0.35 × 0.35 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.625, Tmax = 0.640

  • 25962 measured reflections

  • 4907 independent reflections

  • 4254 reflections with F2 > 2σ(F2)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.221

  • S = 1.08

  • 4907 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.82 1.90 2.706 (2) 167
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Compound (I) is a charge-control-agent used for toners in electrophotography. The background of the present study has been set out in a previous contribution (Uta et al., 2009). We have previously investigated the crystal structures of two isomers of (I) in connection with the mechanism of their high thermal stability, namely benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate (Mizuguchi et al., 2007) and benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate (Uta et al., 2009). The anions in both isomers are found to form chains via O—H···O hydrogen bonds formed between the O—H group of one anion and the sulfonic-O atom of neighbors. The presence of these hydrogen-bonded networks ensures the high thermal stability of these compounds as characterized by their high melting points of 462 K and 433 K, respectively. This paper describes a variation to the above in that the O—H···O hydrogen bonding occurs between isolated pairs of molecules.

The asymmetric unit of (I) comprises a benzyltributylammonium cation and a 4-hydroxynaphthalene-2-sulfonate anion, Fig. 1. Centrosymmetrically related anions associate via O—H···O hydrogen bonds, Fig. 2 and Table 1, to form a 14-membered ring. As highlighted in the side-on view of Fig. 3, a step topology characterizes the dimeric unit so that the distance between the parallel naphthalene skeletons is about 1.6 Å. The hydrogen-bonded dimer in (I) is found to enhance the thermal stability as seen in the melting point of 451 K.

Related literature top

For the function of charge-control agents, see: Nash et al. (2001). For the structures of benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate and benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate, see: Mizuguchi et al. (2007) and Uta et al. (2009), respectively.

Experimental top

Compound (I) was obtained from Orient Chemical Industries, Ltd. and was recrystallized from a dichloromethane solution. After 48 h, a number of colorless crystals were obtained in the form of blocks.

Refinement top

Each of the two pairs of butyl-C10 & C11 and C18 & C19 atoms were found to be disordered over two sites. From anisotropic refinement, the site occupancies for the C10A/C10B and C11A/C11B pairs were fixed at 0.33 and 0.67, respectively, whereas those for C18A/C18B and C19A/C19B were fixed at 0.34 and 0.66, respectively. All H atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å, and with Uiso(H) = 1.2-1.5Ueq(parent atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids and only the major components of the disordered residues.
[Figure 2] Fig. 2. View of the hydrogen bonded anion dimer in (I). The O—-H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Side-on view of the hydrogen bonded anion dimer in (I) highlighting the step-like topology. The O—-H···O hydrogen bonds are shown as dashed lines.
Benzyltributylammonium 4-hydroxynaphthalene-2-sulfonate top
Crystal data top
C19H34N+·C10H7O4SF(000) = 1080
Mr = 499.70Dx = 1.175 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 20030 reflections
a = 11.2676 (11) Åθ = 3.5–68.2°
b = 12.4528 (12) ŵ = 1.27 mm1
c = 20.549 (2) ÅT = 296 K
β = 101.628 (7)°Block, colorless
V = 2824.1 (5) Å30.50 × 0.35 × 0.35 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4254 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.033
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.625, Tmax = 0.640k = 1515
25962 measured reflectionsl = 2424
4907 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.1354P)2 + 1.1699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.221(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.67 e Å3
4907 reflectionsΔρmin = 0.97 e Å3
347 parameters
Crystal data top
C19H34N+·C10H7O4SV = 2824.1 (5) Å3
Mr = 499.70Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.2676 (11) ŵ = 1.27 mm1
b = 12.4528 (12) ÅT = 296 K
c = 20.549 (2) Å0.50 × 0.35 × 0.35 mm
β = 101.628 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4907 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4254 reflections with F2 > 2σ(F2)
Tmin = 0.625, Tmax = 0.640Rint = 0.033
25962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.082347 parameters
wR(F2) = 0.221H-atom parameters constrained
S = 1.08Δρmax = 0.67 e Å3
4907 reflectionsΔρmin = 0.97 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.91846 (5)0.00482 (5)0.63573 (3)0.0505 (2)
O10.80247 (16)0.02686 (17)0.59362 (10)0.0661 (5)
O20.97467 (17)0.09153 (14)0.61559 (10)0.0630 (4)
O30.91597 (19)0.00507 (16)0.70580 (10)0.0672 (5)
O41.1388 (2)0.22083 (17)0.48351 (10)0.0714 (5)
N10.63389 (19)0.16264 (17)0.75442 (12)0.0573 (5)
C10.4036 (2)0.0072 (2)0.68571 (16)0.0625 (7)
C20.3010 (2)0.0304 (2)0.63847 (17)0.0691 (7)
C30.2984 (2)0.0091 (2)0.57251 (18)0.0703 (8)
C40.3972 (3)0.0358 (2)0.55390 (16)0.0737 (8)
C50.5013 (2)0.0591 (2)0.60108 (15)0.0677 (7)
C60.5045 (2)0.0377 (2)0.66767 (14)0.0541 (6)
C70.6212 (2)0.0541 (2)0.71838 (14)0.0581 (6)
C80.5322 (2)0.1792 (2)0.79266 (16)0.0734 (8)
C90.53000 (17)0.1034 (3)0.85017 (16)0.0945 (10)
C10A0.4160 (3)0.0773 (3)0.8763 (3)0.105 (2)0.33
C10B0.4118 (3)0.1309 (3)0.8716 (2)0.1068 (19)0.67
C11A0.3668 (12)0.1744 (7)0.9023 (8)0.133 (2)0.33
C11B0.4095 (7)0.0758 (6)0.9349 (3)0.133 (2)0.67
C120.6247 (2)0.2546 (2)0.70588 (16)0.0695 (7)
C130.7250 (3)0.2623 (2)0.66732 (16)0.0794 (9)
C140.6911 (2)0.3473 (3)0.6135 (2)0.1264 (16)
C150.7786 (6)0.3542 (6)0.5691 (3)0.200 (3)
C160.7576 (2)0.1590 (2)0.80101 (15)0.0625 (7)
C170.7946 (2)0.2602 (2)0.84116 (16)0.0797 (8)
C18A0.9264 (3)0.2545 (3)0.8776 (4)0.097 (3)0.34
C18B0.9066 (4)0.2397 (6)0.8951 (2)0.107 (2)0.66
C19A0.9500 (12)0.1705 (8)0.9291 (5)0.1192 (19)0.34
C19B1.0137 (5)0.2081 (6)0.8686 (3)0.1192 (19)0.66
C201.0176 (2)0.10968 (19)0.62246 (12)0.0490 (5)
C211.0829 (2)0.1662 (2)0.67460 (14)0.0567 (6)
C221.1668 (2)0.2447 (2)0.66307 (15)0.0592 (6)
C231.2369 (2)0.3057 (2)0.71564 (18)0.0758 (8)
C241.3190 (3)0.3785 (2)0.7044 (2)0.0871 (10)
C251.3381 (2)0.3946 (2)0.6407 (2)0.0880 (11)
C261.2734 (2)0.3379 (2)0.58762 (19)0.0751 (8)
C271.1857 (2)0.2624 (2)0.59803 (15)0.0578 (6)
C281.1160 (2)0.2017 (2)0.54510 (13)0.0543 (6)
C291.0324 (2)0.1288 (2)0.55687 (12)0.0504 (5)
H10.40480.02210.73020.075*
H20.23370.06040.65130.083*
H30.22960.02510.54060.084*
H40.39490.05100.50930.088*
H4O1.09550.18220.45630.086*
H50.56840.08890.58800.081*
H7A0.68770.04720.69530.073*
H7B0.62760.00190.75070.073*
H8A0.53770.25210.80970.088*
H8B0.45540.17290.76150.088*
H9A0.58860.13100.88760.113*0.33
H9B0.56170.03530.83820.113*0.33
H9C0.59900.11560.88610.113*0.67
H9D0.53040.02910.83600.113*0.67
H10A0.35540.04710.84070.125*0.33
H10B0.43490.02410.91130.125*0.33
H10C0.40600.20790.87730.128*0.67
H10D0.34350.10790.83790.128*0.67
H11A0.29890.15510.92160.200*0.33
H11B0.34110.22440.86670.200*0.33
H11C0.42840.20690.93560.200*0.33
H11D0.42570.00070.93050.200*0.67
H11E0.33110.08450.94580.200*0.67
H11F0.47010.10620.96950.200*0.67
H12A0.54830.24850.67450.083*
H12B0.62270.32110.73020.083*
H13A0.73600.19340.64730.095*
H13B0.80040.28170.69690.095*
H14A0.61160.33100.58720.152*
H14B0.68630.41670.63440.152*
H15A0.85660.37430.59440.300*
H15B0.75180.40710.53540.300*
H15C0.78450.28570.54860.300*
H16A0.75810.09960.83160.075*
H16B0.81830.14390.77480.075*
H17A0.74290.26960.87320.096*0.34
H17B0.78360.32180.81170.096*0.34
H17C0.72840.28370.86140.096*0.66
H17D0.81160.31680.81190.096*0.66
H18A0.97700.24120.84540.116*0.34
H18B0.94950.32350.89810.116*0.34
H18C0.92550.30440.92150.129*0.66
H18D0.88860.18340.92420.129*0.66
H19A0.87590.13370.93090.179*0.34
H19B0.98180.20290.97150.179*0.34
H19C1.00790.12020.91860.179*0.34
H19D0.99940.13950.84710.179*0.66
H19E1.08300.20340.90430.179*0.66
H19F1.02860.26080.83700.179*0.66
H211.07220.15300.71760.068*
H231.22580.29510.75880.091*
H241.36290.41800.73950.104*
H251.39550.44460.63360.106*
H261.28750.34930.54510.090*
H290.98510.09180.52170.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0471 (3)0.0556 (3)0.0498 (4)0.0019 (2)0.0121 (2)0.0009 (2)
O10.0447 (9)0.0798 (12)0.0700 (13)0.0022 (8)0.0026 (8)0.0053 (9)
O20.0680 (11)0.0481 (9)0.0778 (12)0.0001 (8)0.0264 (9)0.0020 (8)
O30.0714 (12)0.0808 (13)0.0529 (12)0.0005 (9)0.0208 (9)0.0039 (8)
O40.0883 (13)0.0682 (12)0.0624 (12)0.0186 (10)0.0261 (10)0.0013 (9)
N10.0523 (11)0.0544 (11)0.0650 (14)0.0038 (9)0.0118 (10)0.0133 (9)
C10.0623 (16)0.0628 (16)0.0629 (18)0.0047 (12)0.0140 (14)0.0025 (12)
C20.0529 (14)0.0727 (17)0.080 (2)0.0037 (13)0.0091 (14)0.0040 (15)
C30.0572 (16)0.0753 (19)0.072 (2)0.0098 (13)0.0029 (14)0.0090 (14)
C40.0740 (18)0.089 (2)0.0562 (18)0.0045 (16)0.0088 (14)0.0033 (15)
C50.0629 (15)0.0783 (19)0.0640 (18)0.0043 (14)0.0181 (13)0.0072 (14)
C60.0522 (13)0.0503 (13)0.0597 (16)0.0044 (10)0.0109 (11)0.0074 (11)
C70.0539 (13)0.0514 (13)0.0659 (17)0.0030 (11)0.0050 (12)0.0156 (11)
C80.0551 (14)0.082 (2)0.085 (2)0.0037 (14)0.0181 (14)0.0301 (16)
C90.091 (2)0.118 (2)0.079 (2)0.016 (2)0.0288 (18)0.021 (2)
C10A0.108 (5)0.131 (6)0.089 (5)0.011 (5)0.051 (4)0.013 (5)
C10B0.107 (3)0.107 (4)0.107 (4)0.000 (3)0.022 (3)0.000 (3)
C11A0.136 (4)0.150 (5)0.133 (4)0.034 (4)0.072 (3)0.023 (3)
C11B0.136 (4)0.150 (5)0.133 (4)0.034 (4)0.072 (3)0.023 (3)
C120.0718 (17)0.0527 (15)0.080 (2)0.0071 (12)0.0058 (15)0.0059 (13)
C130.088 (2)0.0681 (18)0.083 (2)0.0052 (16)0.0189 (18)0.0014 (15)
C140.180 (4)0.087 (2)0.124 (3)0.009 (3)0.057 (3)0.023 (2)
C150.257 (8)0.173 (6)0.199 (6)0.004 (6)0.115 (6)0.052 (5)
C160.0512 (13)0.0635 (15)0.0697 (18)0.0009 (11)0.0051 (12)0.0117 (12)
C170.0754 (18)0.0747 (18)0.085 (2)0.0020 (15)0.0072 (15)0.0266 (15)
C18A0.082 (4)0.091 (5)0.106 (6)0.013 (5)0.006 (5)0.035 (4)
C18B0.089 (3)0.110 (4)0.108 (4)0.007 (3)0.013 (2)0.025 (3)
C19A0.082 (2)0.115 (4)0.146 (5)0.003 (3)0.010 (2)0.008 (3)
C19B0.082 (2)0.115 (4)0.146 (5)0.003 (3)0.010 (2)0.008 (3)
C200.0459 (11)0.0502 (12)0.0502 (14)0.0061 (9)0.0079 (10)0.0018 (10)
C210.0557 (13)0.0608 (14)0.0530 (15)0.0054 (11)0.0096 (11)0.0075 (11)
C220.0514 (13)0.0541 (14)0.0691 (18)0.0071 (11)0.0045 (12)0.0155 (11)
C230.0674 (17)0.0699 (18)0.083 (2)0.0005 (14)0.0009 (15)0.0261 (15)
C240.0656 (18)0.071 (2)0.117 (3)0.0029 (15)0.0002 (19)0.0342 (19)
C250.0600 (17)0.0616 (18)0.140 (3)0.0112 (14)0.015 (2)0.022 (2)
C260.0644 (16)0.0560 (16)0.109 (2)0.0063 (13)0.0266 (17)0.0067 (15)
C270.0514 (13)0.0462 (12)0.0762 (18)0.0008 (10)0.0137 (12)0.0077 (11)
C280.0576 (13)0.0478 (12)0.0586 (15)0.0018 (10)0.0144 (11)0.0004 (10)
C290.0512 (12)0.0498 (12)0.0483 (14)0.0005 (10)0.0057 (10)0.0033 (10)
Geometric parameters (Å, º) top
S1—O11.4409 (17)C7—H7A0.968
S1—O21.4552 (19)C7—H7B0.955
S1—O31.446 (2)C8—H8A0.970
S1—C201.775 (2)C8—H8B0.970
O4—C281.362 (3)C9—H9A0.970
N1—C71.535 (3)C9—H9B0.970
N1—C81.529 (4)C10A—H10A0.970
N1—C121.508 (3)C10A—H10B0.970
N1—C161.524 (3)C10B—H10C0.970
C1—C21.382 (4)C10B—H10D0.970
C1—C61.383 (4)C11A—H11A0.960
C2—C31.376 (5)C11A—H11B0.960
C3—C41.367 (4)C11A—H11C0.960
C4—C51.393 (4)C11B—H11D0.960
C5—C61.387 (4)C11B—H11E0.960
C6—C71.518 (3)C11B—H11F0.960
C8—C91.517 (4)C12—H12A0.970
C9—C10A1.523 (5)C12—H12B0.970
C9—C10B1.524 (5)C13—H13A0.970
C10A—C11A1.475 (13)C13—H13B0.970
C10B—C11B1.475 (8)C14—H14A0.970
C12—C131.508 (5)C14—H14B0.970
C13—C141.523 (4)C15—H15A0.960
C14—C151.474 (8)C15—H15B0.960
C16—C171.518 (4)C15—H15C0.960
C17—C18A1.524 (5)C16—H16A0.970
C17—C18B1.524 (5)C16—H16B0.970
C18A—C19A1.475 (13)C17—H17A0.970
C18B—C19B1.475 (8)C17—H17B0.970
C20—C211.367 (3)C18A—H18A0.970
C20—C291.411 (3)C18A—H18B0.970
C21—C221.412 (3)C18B—H18C0.970
C22—C231.423 (4)C18B—H18D0.970
C22—C271.413 (4)C19A—H19A0.960
C23—C241.349 (5)C19A—H19B0.960
C24—C251.383 (6)C19A—H19C0.960
C25—C261.378 (5)C19B—H19D0.960
C26—C271.411 (4)C19B—H19E0.960
C27—C281.424 (3)C19B—H19F0.960
C28—C291.364 (3)C21—H210.930
O4—H4O0.820C23—H230.930
C1—H10.930C24—H240.930
C2—H20.930C25—H250.930
C3—H30.930C26—H260.930
C4—H40.930C29—H290.930
C5—H50.930
O2···O4i2.706 (2)C5···H18Biv2.985
O4···O2i2.706 (2)C7···H9D2.826
S1···H4Oi2.984C8···H9C2.073
O1···H3ii2.710C8···H9D2.073
O1···H4ii2.910C8···H17C2.706
O1···H52.728C9···H9C0.970
O1···H7A2.681C9···H9D0.970
O1···H13A2.532C10B···H9C2.079
O2···H2iii2.889C10B···H9D2.079
O2···H4Oi1.900C11B···H15Bvii2.991
O2···H8Aiv2.501C11B···H9C2.585
O2···H10Civ2.826C11B···H9D2.728
O2···H29i2.945C12···H17D2.816
O2···H17Civ2.882C15···H11Evi2.822
O3···H7A2.590C16···H9C2.792
O3···H12Biv2.720C16···H17C2.056
O3···H16B2.615C16···H17D2.056
O3···H24v2.742C17···H17C0.970
O4···H9Avi2.676C17···H17D0.970
O4···H11Cvi2.542C18B···H17C2.061
O4···H11Fvi2.848C18B···H17D2.061
O4···H17Avi2.757C19B···H17D2.703
O4···H9Cvi2.829C23···H8Biii2.958
O4···H17Cvi2.887C24···H10Aviii2.897
N1···H9C2.871C25···H10Aviii2.973
N1···H9D2.779C25···H12Aiii2.956
N1···H17C2.702C26···H11Dviii2.991
N1···H17D2.852C28···H11Cvi2.985
O1—S1—O2112.35 (11)C9—C10B—H10C109.9
O1—S1—O3113.60 (12)C9—C10B—H10D109.9
O1—S1—C20106.88 (11)C11B—C10B—H10C109.9
O2—S1—O3112.45 (11)C11B—C10B—H10D109.9
O2—S1—C20103.85 (11)H10C—C10B—H10D108.3
O3—S1—C20106.89 (11)C10A—C11A—H11A109.5
C7—N1—C8111.1 (2)C10A—C11A—H11B109.5
C7—N1—C12111.2 (2)C10A—C11A—H11C109.5
C7—N1—C16105.12 (18)H11A—C11A—H11B109.5
C8—N1—C12106.2 (2)H11A—C11A—H11C109.5
C8—N1—C16111.5 (2)H11B—C11A—H11C109.5
C12—N1—C16111.7 (2)C10B—C11B—H11D109.5
C2—C1—C6120.8 (3)C10B—C11B—H11E109.5
C1—C2—C3120.0 (3)C10B—C11B—H11F109.5
C2—C3—C4119.8 (2)H11D—C11B—H11E109.5
C3—C4—C5120.6 (3)H11D—C11B—H11F109.5
C4—C5—C6119.8 (2)H11E—C11B—H11F109.5
C1—C6—C5118.9 (2)N1—C12—H12A108.3
C1—C6—C7121.0 (2)N1—C12—H12B108.3
C5—C6—C7119.9 (2)C13—C12—H12A108.3
N1—C7—C6115.6 (2)C13—C12—H12B108.3
N1—C8—C9116.6 (2)H12A—C12—H12B107.4
C8—C9—C10A123.6 (2)C12—C13—H13A109.9
C8—C9—C10B103.8 (2)C12—C13—H13B109.9
C9—C10B—C11B108.8 (4)C14—C13—H13A109.9
N1—C12—C13115.9 (2)C14—C13—H13B109.9
C12—C13—C14108.7 (2)H13A—C13—H13B108.3
C13—C14—C15112.9 (3)C13—C14—H14A109.0
N1—C16—C17115.6 (2)C13—C14—H14B109.0
C16—C17—C18A111.2 (3)C15—C14—H14A109.0
C16—C17—C18B110.7 (3)C15—C14—H14B109.0
C17—C18A—C19A113.8 (6)H14A—C14—H14B107.8
C17—C18B—C19B113.3 (4)C14—C15—H15A109.5
S1—C20—C21121.0 (2)C14—C15—H15B109.5
S1—C20—C29118.05 (17)C14—C15—H15C109.5
C21—C20—C29120.9 (2)H15A—C15—H15B109.5
C20—C21—C22119.9 (2)H15A—C15—H15C109.5
C21—C22—C23122.0 (2)H15B—C15—H15C109.5
C21—C22—C27120.1 (2)N1—C16—H16A108.4
C23—C22—C27117.9 (2)N1—C16—H16B108.4
C22—C23—C24121.6 (3)C17—C16—H16A108.4
C23—C24—C25120.2 (3)C17—C16—H16B108.4
C24—C25—C26121.0 (3)H16A—C16—H16B107.4
C25—C26—C27119.8 (3)C16—C17—H17A109.4
C22—C27—C26119.4 (2)C16—C17—H17B109.4
C22—C27—C28118.3 (2)C16—C17—H17C109.5
C26—C27—C28122.2 (2)C16—C17—H17D109.5
O4—C28—C27116.0 (2)C18A—C17—H17A109.4
O4—C28—C29123.2 (2)C18A—C17—H17B109.4
C27—C28—C29120.8 (2)C18B—C17—H17C109.5
C20—C29—C28120.0 (2)C18B—C17—H17D109.5
C28—O4—H4O109.5H17A—C17—H17B108.0
C2—C1—H1119.6H17C—C17—H17D108.1
C6—C1—H1119.6C17—C18A—H18A108.8
C1—C2—H2120.0C17—C18A—H18B108.8
C3—C2—H2120.0C19A—C18A—H18A108.8
C2—C3—H3120.1C19A—C18A—H18B108.8
C4—C3—H3120.1H18A—C18A—H18B107.7
C3—C4—H4119.7C17—C18B—H18C108.9
C5—C4—H4119.7C17—C18B—H18D108.9
C4—C5—H5120.1C19B—C18B—H18C108.9
C6—C5—H5120.1C19B—C18B—H18D108.9
N1—C7—H7A108.0H18C—C18B—H18D107.7
N1—C7—H7B108.6C18A—C19A—H19A109.5
C6—C7—H7A107.5C18A—C19A—H19B109.5
C6—C7—H7B108.3C18A—C19A—H19C109.5
H7A—C7—H7B108.6H19A—C19A—H19B109.5
N1—C8—H8A108.1H19A—C19A—H19C109.5
N1—C8—H8B108.1H19B—C19A—H19C109.5
C9—C8—H8A108.1C18B—C19B—H19D109.5
C9—C8—H8B108.1C18B—C19B—H19E109.5
H8A—C8—H8B107.3C18B—C19B—H19F109.5
C8—C9—H9A106.4H19D—C19B—H19E109.5
C8—C9—H9B106.4H19D—C19B—H19F109.5
C8—C9—H9C111.0H19E—C19B—H19F109.5
C8—C9—H9D111.0C20—C21—H21120.1
C10A—C9—H9A106.4C22—C21—H21120.1
C10A—C9—H9B106.4C22—C23—H23119.2
C10B—C9—H9C111.0C24—C23—H23119.2
C10B—C9—H9D111.0C23—C24—H24119.9
H9A—C9—H9B106.5C25—C24—H24119.9
H9C—C9—H9D109.0C24—C25—H25119.5
C9—C10A—H10A109.4C26—C25—H25119.5
C9—C10A—H10B109.4C25—C26—H26120.1
C11A—C10A—H10A109.4C27—C26—H26120.1
C11A—C10A—H10B109.4C20—C29—H29120.0
H10A—C10A—H10B108.0C28—C29—H29120.0
O1—S1—C20—C21127.8 (2)C8—C9—C10A—C11A62.4 (8)
O1—S1—C20—C2955.8 (2)C8—C9—C10B—C11B170.1 (4)
O2—S1—C20—C21113.2 (2)N1—C12—C13—C14171.0 (2)
O2—S1—C20—C2963.2 (2)C12—C13—C14—C15174.9 (3)
O3—S1—C20—C215.9 (2)N1—C16—C17—C18A171.1 (3)
O3—S1—C20—C29177.75 (19)N1—C16—C17—C18B168.8 (3)
C7—N1—C8—C965.3 (2)C16—C17—C18B—C19B61.8 (6)
C8—N1—C7—C660.0 (3)S1—C20—C21—C22176.06 (19)
C7—N1—C12—C1365.4 (2)S1—C20—C29—C28173.89 (19)
C12—N1—C7—C658.1 (3)C21—C20—C29—C282.5 (3)
C7—N1—C16—C17177.8 (2)C29—C20—C21—C220.2 (3)
C16—N1—C7—C6179.2 (2)C20—C21—C22—C23179.96 (18)
C8—N1—C12—C13173.6 (2)C20—C21—C22—C271.9 (3)
C12—N1—C8—C9173.6 (2)C21—C22—C23—C24178.3 (2)
C8—N1—C16—C1761.7 (3)C21—C22—C27—C26177.4 (2)
C16—N1—C8—C951.6 (3)C21—C22—C27—C281.8 (3)
C12—N1—C16—C1757.0 (3)C23—C22—C27—C260.8 (3)
C16—N1—C12—C1351.8 (3)C23—C22—C27—C28180.0 (2)
C2—C1—C6—C50.2 (3)C27—C22—C23—C240.1 (3)
C2—C1—C6—C7174.4 (2)C22—C23—C24—C250.8 (5)
C6—C1—C2—C30.2 (4)C23—C24—C25—C260.6 (5)
C1—C2—C3—C40.5 (4)C24—C25—C26—C270.3 (4)
C2—C3—C4—C50.8 (5)C25—C26—C27—C221.0 (4)
C3—C4—C5—C60.7 (5)C25—C26—C27—C28179.8 (2)
C4—C5—C6—C10.4 (4)C22—C27—C28—O4179.2 (2)
C4—C5—C6—C7174.7 (2)C22—C27—C28—C290.5 (3)
C1—C6—C7—N190.5 (3)C26—C27—C28—O40.1 (2)
C5—C6—C7—N195.4 (3)C26—C27—C28—C29179.6 (2)
N1—C8—C9—C10A155.4 (3)O4—C28—C29—C20177.1 (2)
N1—C8—C9—C10B173.1 (2)C27—C28—C29—C202.6 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+3/2, y1/2, z+3/2; (v) x+5/2, y1/2, z+3/2; (vi) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.821.902.706 (2)167
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H34N+·C10H7O4S
Mr499.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.2676 (11), 12.4528 (12), 20.549 (2)
β (°) 101.628 (7)
V3)2824.1 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.27
Crystal size (mm)0.50 × 0.35 × 0.35
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.625, 0.640
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
25962, 4907, 4254
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.221, 1.08
No. of reflections4907
No. of parameters347
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.97

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.821.902.706 (2)167
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd for the sample preparation.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUta, K., Sato, Y. & Mizuguchi, J. (2009). Acta Cryst. E65, o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds